Pointwise product of functions
Template:New function from old
Contents
Definition
For two functions
Suppose and
are functions. The pointwise product (often simply called the product) of the functions, denoted
, or sometimes simply as
, is defined as the function:
In other words, every element is sent to the product (in the sense of multiplication) of the values of and
at that element.
The domain of the pointwise product of and
is defined as the intersection of the domain of
and the domain of
. This is necessary, because, for a pointwise product to make sense, both functions must be defined at the point.
For multiple functions
Suppose are functions. The pointwise product of these, denoted
or
, is defined as the function:
In other words, every element is sent to the product (in the sense of multiplication) of the values of at that element.
The domain of the pointwise product of a bunch of functions is defined as the intersection of the domains of all the functions.
Relation with various operations
For two functions
Below we discuss how to perform various operations on the pointwise product of
and
, given knowledge of how to perform the operations on
and
individually.
Operation | Verbal description | How it's done |
---|---|---|
Graph ![]() |
We are given the graphs of f and g (without necessarily having algebraic, numerical, or verbal descriptions of the functions) and we need a geometric method to sketch the graph of ![]() |
too tricky? |
Obtain explicit expression for ![]() |
We are given algebraic expressions for ![]() ![]() ![]() |
Part of a general procedure: finding pointwise combinations of functions by plugging in expressions. See also the piecewise case: finding pointwise combinations of piecewise functions by plugging in expressions. |
Find limit of ![]() |
We know how to find limits of ![]() |
limit of products is product of limits |
Differentiate ![]() |
We know how to differentiate ![]() ![]() ![]() |
product rule for differentiation: ![]() |
Integrate ![]() |
We want to integrate ![]() |
We can try integration by u-substitution or integration by parts. |