Product rule for higher derivatives
This article is about a differentiation rule, i.e., a rule for differentiating a function expressed in terms of other functions whose derivatives are known.
View other differentiation rules
Statement
Version type | Statement |
---|---|
specific point, named functions | This states that if and are times differentiable functions at , then the pointwise product is also times differentiable at , and we have: Here, denotes the derivative of (with , etc.), denotes the derivative of , and is the binomial coefficient. These are the same as the coefficients that appear in the expansion of . |
generic point, named functions, point notation | If and are functions of one variable, the following holds wherever the right side makes sense: |
generic point, named functions, point-free notation | If and are functions of one variable, the following holds wherever the right side makes sense: |
Pure Leibniz notation | Suppose and are both variables functionally dependent on . Then |
Particular cases
Value of | Formula for |
---|---|
1 | (this is the usual product rule for differentiation). |
2 | . |
3 | . |
4 | |
5 |