Inverse function integration formula: Difference between revisions
(Created page with "==Statement== ===In terms of indefinite integrals=== Suppose <math>f</math> is a continuous one-one function. Then, we have: <math>\! \int f^{-1}(x) \, dx = xf^{-1}(x) - \...") |
|||
| Line 46: | Line 46: | ||
! Original function !! Domain on which it restricts to a [[one-one function]] !! Inverse function for the restriction to that domain !! Domain of inverse function (equals range of original function) !! Antiderivative of original function !! Antiderivative of inverse function !! Explanation using inverse function integration formula !! Alternate explanation using integration by parts | ! Original function !! Domain on which it restricts to a [[one-one function]] !! Inverse function for the restriction to that domain !! Domain of inverse function (equals range of original function) !! Antiderivative of original function !! Antiderivative of inverse function !! Explanation using inverse function integration formula !! Alternate explanation using integration by parts | ||
|- | |- | ||
| [[sine function]] <math>\sin</math> || <math>[-\pi/2,\pi/2]</math> || [[arc sine function]] <math>\arcsin</math> || <math>[-1,1]</math> || negative of [[cosine function]], i.e., <math>-\cos</math> || <math>x \arcsin x + \sqrt{1 - x^2}</math> || We get <math>x \arcsin x - (-\cos(\arcsin x)) = x \arcsin x + \cos(\arcsin x)</math>. Now, use that <math>\cos</math> is nonnegative on the range of <math>\arcsin</math> and that <math>\cos^2\theta + \sin^2\theta = 1</math> to rewrite <math>\cos(\arcsin x) = \sqrt{1 - x^2}</math>. || The usual method: < | | [[sine function]] <math>\sin</math> || <math>[-\pi/2,\pi/2]</math> || [[arc sine function]] <math>\arcsin</math> || <math>[-1,1]</math> || negative of [[cosine function]], i.e., <math>-\cos</math> || <math>x \arcsin x + \sqrt{1 - x^2}</math> || We get <math>x \arcsin x - (-\cos(\arcsin x)) = x \arcsin x + \cos(\arcsin x)</math>. Now, use that <math>\cos</math> is nonnegative on the range of <math>\arcsin</math> and that <math>\cos^2\theta + \sin^2\theta = 1</math> to rewrite <math>\cos(\arcsin x) = \sqrt{1 - x^2}</math>. || The usual method: <toggledisplay>Take 1 as the part to integrate, get <math>x \arcsin x - \int \frac{x \, dx}{\sqrt{1 - x^2}}</math> For the latter integration, put <math>v = 1 - x^2</math>, get <math>(-1/2) \int \frac{dv}{\sqrt{v}} = -\sqrt{v}</math>. The minus sign cancels with the outer minus sign, and we get the result.</toggledisplay> | ||
|- | |- | ||
| [[tangent function]] <math>\tan</math> || <math>(-\pi/2,\pi/2)</math> || [[arc tangent function]] <math>\arctan</math> || all real numbers || <math>-\ln|\cos x|</math>, same as <math>\ln|\sec x|</math> || <math>x \arctan x - \frac{1}{2}\ln(1 + x^2)</math> || We get <math>x \arctan x - \ln|\sec(\arctan x)|</math>. Use that <math>|\sec(\arctan x)| = \sqrt{1 + x^2}</math> and simplify. || | | [[tangent function]] <math>\tan</math> || <math>(-\pi/2,\pi/2)</math> || [[arc tangent function]] <math>\arctan</math> || all real numbers || <math>-\ln|\cos x|</math>, same as <math>\ln|\sec x|</math> || <math>x \arctan x - \frac{1}{2}\ln(1 + x^2)</math> || We get <math>x \arctan x - \ln|\sec(\arctan x)|</math>. Use that <math>|\sec(\arctan x)| = \sqrt{1 + x^2}</math> and simplify. || <toggledisplay>Take 1 as the part to integrate, get <math>x \arctan x - \int \frac{x \, dx}{1 + x^2}</math>, now use <math>g'/g</math> form to note that the latter is <math>(1/2) \ln(1 + x^2)</math>. </toggledisplay> | ||
|- | |- | ||
| [[exponential function]] <math>\exp</math> || all real numbers || [[natural logarithm]] <math>\ln</math> || <math>(0,\infty)</math> || [[exponential function]] <math>\exp</math> || <math>x \ln x - x</math> || We get <math>x \ln x - \exp(\ln x) = x \ln x - x</math> | | [[exponential function]] <math>\exp</math> || all real numbers || [[natural logarithm]] <math>\ln</math> || <math>(0,\infty)</math> || [[exponential function]] <math>\exp</math> || <math>x \ln x - x</math> || We get <math>x \ln x - \exp(\ln x) = x \ln x - x</math> || <toggledisplay>Take 1 as the part to integrate, get <math>x \ln x - \int x \frac{1}{x} \, dx = x \ln x - \int 1 \, dx = x \ln x - x</math>.</toggledisplay> | ||
|} | |} | ||
Revision as of 18:22, 16 December 2011
Statement
In terms of indefinite integrals
Suppose is a continuous one-one function. Then, we have:
where .
More explicitly, if is an antiderivative for , then:
This can be justified either directly or using integration by parts and integration by u-substitution.
In terms of definite integrals
Suppose is a continuous one-one function on an interval. Suppose we are integrating on an interval of the form that lies in the range of . Then:
This simplifies to:
More explicitly, if is an antiderivative for , then:
Significance
Computational feasibility significance
| Version type | Significance |
|---|---|
| indefinite integral | Given an antiderivative for a continuous one-one function , it is possible to explicitly write down an antiderivative for the inverse function in terms of and the antiderivative for . |
| definite integral | Given an antiderivative for a continuous one-one function , and given knowledge of the values of at and , it is possible to explicitly compute the definite integral of on . |
Examples
| Original function | Domain on which it restricts to a one-one function | Inverse function for the restriction to that domain | Domain of inverse function (equals range of original function) | Antiderivative of original function | Antiderivative of inverse function | Explanation using inverse function integration formula | Alternate explanation using integration by parts |
|---|---|---|---|---|---|---|---|
| sine function | arc sine function | negative of cosine function, i.e., | We get . Now, use that is nonnegative on the range of and that to rewrite . | The usual method: [SHOW MORE] | |||
| tangent function | arc tangent function | all real numbers | , same as | We get . Use that and simplify. | [SHOW MORE] | ||
| exponential function | all real numbers | natural logarithm | exponential function | We get | [SHOW MORE] |