Quiz:Product rule for differentiation: Difference between revisions
| Line 81: | Line 81: | ||
{What is the derivative of the function <math>x \mapsto x \sin x \ln x</math> for <math>x > 0</math>? Hint for derivatives of individual functions: <toggledisplay>Derivative of <math>\sin</math> is <math>\cos</math>, derivative of <math>\ln</math> is <math>x \mapsto 1/x</math></toggledisplay> | {What is the derivative of the function <math>x \mapsto x \sin x \ln x</math> for <math>x > 0</math>? Hint for derivatives of individual functions: <toggledisplay>Derivative of <math>\sin</math> is <math>\cos</math>, derivative of <math>\ln</math> is <math>x \mapsto 1/x</math></toggledisplay> | ||
|type="()"} | |type="()"} | ||
- <math>(\cos x)/x</math> | - <math>x \mapsto (\cos x)/x</math> | ||
- <math>(-\cos x)/x</math> | - <math>x \mapsto (-\cos x)/x</math> | ||
- <math>\cos x \ln x + \cos x + (\sin x)/x</math> | - <math>x \mapsto \cos x \ln x + \cos x + (\sin x)/x</math> | ||
- <math>\cos x \ln x - \cos x + (\sin x)/x</math> | - <math>x \mapsto \cos x \ln x - \cos x + (\sin x)/x</math> | ||
+ <math>\sin x \ln x + x \cos x \ln x + \sin x</math> | + <math>x \mapsto \sin x \ln x + x \cos x \ln x + \sin x</math> | ||
</quiz> | </quiz> | ||
Revision as of 21:30, 5 December 2011
For a quiz that tests all the differentiation rules together, see Quiz:Differentiation rules.
For background, see product rule for differentiation and product rule for higher derivatives.
Formulas
Qualitative and existential significance
Computational feasibility
Computational results