Quiz:Differentiation rules: Difference between revisions
(Created page with "<quiz display=simple> {Which of the following verbal statements is ''not valid as a general rule''? |type="()"} - The derivative of the sum of two functions is the sum of the der...") |
No edit summary |
||
| Line 38: | Line 38: | ||
{Suppose <math>f</math> and <math>g</math> are both twice differentiable functions everywhere on <math>\R</math>. Which of the following is the correct formula for <math>(f \cdot g)''</math>, the second derivative of the pointwise product? | {Suppose <math>f</math> and <math>g</math> are both twice differentiable functions everywhere on <math>\R</math>. Which of the following is the correct formula for <math>(f \cdot g)''</math>, the second derivative of the pointwise product? | ||
|type="()"} | |||
- <math>f'' \cdot g + f \cdot g''</math> | - <math>f'' \cdot g + f \cdot g''</math> | ||
- <math>f'' \cdot g + f' \cdot g' + f \cdot g''</math> | - <math>f'' \cdot g + f' \cdot g' + f \cdot g''</math> | ||
| Line 46: | Line 47: | ||
{Suppose <math>f</math> and <math>g</math> are both twice differentiable functions everywhere on <math>\R</math>. Which of the following is the correct formula for <math>(f \circ g)''</math>, the second derivative of the pointwise product? | {Suppose <math>f</math> and <math>g</math> are both twice differentiable functions everywhere on <math>\R</math>. Which of the following is the correct formula for <math>(f \circ g)''</math>, the second derivative of the pointwise product? | ||
|type="()"} | |||
- <math>(f'' \circ g) \cdot g''</math> | - <math>(f'' \circ g) \cdot g''</math> | ||
- <math>(f'' \circ g) \cdot (f' \circ g') \cdot g''</math> | - <math>(f'' \circ g) \cdot (f' \circ g') \cdot g''</math> | ||
| Line 53: | Line 55: | ||
- <math>(f' \circ g') \cdot (f \circ g) + (f'' \circ g'')</math> | - <math>(f' \circ g') \cdot (f \circ g) + (f'' \circ g'')</math> | ||
{ Suppose <math>f_1,f_2,f_3</math> are everywhere differentiable functions from <math>\R</math> to <math>\R</math>. What is the derivative <math>(f_1 \cdot f_2 \cdot f_3)'</math>, where <math>f_1 \cdot f_2 \cdot f_3</math> denotes the [[pointwise product of functions]]? | |||
|type="()"} | |||
- <math>f_1' \cdot f_2' \cdot f_3'</math> | |||
+ <math>f_1' \cdot f_2 \cdot f_3 + f_1 \cdot f_2' \cdot f_3 + f_1 \cdot f_2 \cdot f_3'</math> | |||
|| See [[product rule for differentiation#Statement for multiple functions]] | |||
- <math>f_1 \cdot f_2' \cdot f_3' + f_1' \cdot f_2 \cdot f_3' + f_1 \cdot f_2 \cdot f_3'</math> | |||
- <math>f_1' \cdot f_2 + f_2' \cdot f_3 + f_3' \cdot f_1</math> | |||
- <math>f_1'' \cdot f_2' \cdot f_3</math> | |||
{ Suppose <math>f_1,f_2,f_3</math> are everywhere differentiable functions from <math>\R</math> to <math>\R</math>. What is the derivative <math>(f_1 \circ f_2 \circ f_3)'</math> where <math>\circ</math> denotes the [[composite of two functions]]? In other words, <math>(f_1 \circ f_2 \circ f_3)(x) := f_1(f_2(f_3(x)))</math>. | |||
|type="()"} | |||
+ <math>(f_1' \circ f_2 \circ f_3) \cdot (f_2' \circ f_3) \cdot f_3'</math> | |||
|| See [[chain rule for differentiation#Statement for multiple functions]] | |||
- <math>(f_1' \cdot f_2 \cdot f_3) \circ (f_2' \cdot f_3) \circ f_3'</math> | |||
- <math>(f_1 \circ f_2' \circ f_3') \cdot (f_2 \circ f_3') \cdot f_3</math> | |||
- <math>(f_1 \cdot f_2' \cdot f_3') \circ (f_2 \cdot f_3') \circ f_3</math> | |||
</quiz> | </quiz> | ||
Revision as of 17:44, 15 October 2011