Quiz:Product rule for differentiation: Difference between revisions
| Line 71: | Line 71: | ||
- <math>x \mapsto \exp(x)\sin x + \exp(1) \cos x</math> | - <math>x \mapsto \exp(x)\sin x + \exp(1) \cos x</math> | ||
{What is the | {What is the derivative of the function <math>x \mapsto \sqrt{x}\sin(x^2)</math> for <math>x > 0</math>? This question also requires use of [[chain rule for differentiation]]. | ||
|type="()"} | |type="()"} | ||
- <math>x \mapsto \cos(x^2)/(2\sqrt{x})</math> | - <math>x \mapsto \cos(x^2)/(2\sqrt{x})</math> | ||
| Line 78: | Line 78: | ||
- <math>x \mapsto 2x\sqrt{x}\sin(x^2) + \cos(x^2)/(2 \sqrt{x})</math> | - <math>x \mapsto 2x\sqrt{x}\sin(x^2) + \cos(x^2)/(2 \sqrt{x})</math> | ||
+ <math>x \mapsto 2x\sqrt{x}\cos(x^2) + \sin(x^2)/(2 \sqrt{x})</math> | + <math>x \mapsto 2x\sqrt{x}\cos(x^2) + \sin(x^2)/(2 \sqrt{x})</math> | ||
{What is the derivative of the function <math>x \mapsto x \sin x \ln x</math> for <math>x > 0</math>? Hint for derivatives of individual functions: <toggledisplay>Derivative of <math>\sin</math> is <math>\cos</math>, derivative of <math>\ln</math> is <math>x \mapsto 1/x</math></toggledisplay> | |||
|type="()"} | |||
- <math>(\cos x)/x</math> | |||
- <math>(-\cos x)/x</math> | |||
- <math>\cos x \ln x + \cos x + (\sin x)/x</math> | |||
- <math>\cos x \ln x - \cos x + (\sin x)/x</math> | |||
+ <math>\sin x \ln x + x \cos x \ln x + \sin x</math> | |||
</quiz> | </quiz> | ||
Revision as of 21:29, 5 December 2011
For a quiz that tests all the differentiation rules together, see Quiz:Differentiation rules.
For background, see product rule for differentiation and product rule for higher derivatives.
Formulas
Qualitative and existential significance
Computational feasibility
Computational results