Limit

From Calculus

Definition

Two-sided limit

Suppose f is a function of one variable and cR is a point such that f is defined to the immediate left and immediate right of c (note that f may or may not be defined at c). In other words, there exists some value t>0 such that f is defined on (ct,c)(c,c+t).

For a given value LR, we say that:

limxcf(x)=L

if the following holds (the single sentence is broken down into multiple points to make it clearer):

  • For every ϵ>0
  • there exists δ>0 such that
  • for all xR satisfying 0<|xc|<δ (explicitly, x(cδ,c)(c,c+δ)),
  • we have |f(x)L|<ϵ (explicitly, f(x)(Lϵ,L+ϵ)).

The limit (also called the two-sided limit) limxcf(x) is defined as a value LR such that limxcf(x)=L. By the uniqueness theorem for limits, there is at most one value of LR for which limxcf(x)=L. Hence, it makes sense to talk of the limit when it exists.

Left hand limit

Suppose f is a function of one variable and cR is a point such that f is defined to the immediate left of c (note that f may or may not be defined at c). In other words, there exists some value t>0 such that f is defined on (ct,c).

For a given value LR, we say that:

limxcf(x)=L

if the following holds (the single sentence is broken down into multiple points to make it clearer):

  • For every ϵ>0
  • there exists δ>0 such that
  • for all xR satisfying 0<cx<δ (explicitly, x(cδ,c)),
  • we have |f(x)L|<ϵ (explicitly, f(x)(Lϵ,L+ϵ).

The left hand limit (acronym LHL) limxcf(x) is defined as a value LR such that limxcf(x)=L. By the uniqueness theorem for limits (one-sided version), there is at most one value of LR for which limxcf(x)=L. Hence, it makes sense to talk of the left hand limit when it exists.

Right hand limit

Suppose f is a function of one variable and cR is a point such that f is defined to the immediate right of c (note that f may or may not be defined at c). In other words, there exists some value t>0 such that f is defined on (c,c+t).

For a given value LR, we say that:

limxc+f(x)=L

if the following holds (the single sentence is broken down into multiple points to make it clearer):

  • For every ϵ>0
  • there exists δ>0 such that
  • for all xR satisfying 0<xc<δ (explicitly, x(c,c+δ)),
  • we have |f(x)L|<ϵ (explicitly, f(x)(Lϵ,L+ϵ).

The right hand limit (acronym RHL) limxc+f(x) is defined as a value LR such that limxc+f(x)=L. By the uniqueness theorem for limits (one-sided version), there is at most one value of LR for which limxc+f(x)=L. Hence, it makes sense to talk of the right hand limit when it exists.

Relation between the limit notions

The two-sided limit exists if and only if (both the left hand limit and right hand limit exist and they are equal to each other).