Alternating series theorem
Statement
Consider a series of the form:
Suppose the following three conditions hold for the series:
- Alternating signs: All the s are nonzero and the sign of is opposite the sign of .
- Monotonically decreasing in magnitude: for all .
- Terms approach zero: .
Then the series is a convergent series. It may be an absolutely convergent series or a conditionally convergent series, depending on whether the series of the absolute values of its terms converges.