The term "limit" in mathematics is closely related to one of the many senses in which the term "limit" is used in day-to-day English. In day-to-day English, there are two uses of the term "limit":
The mathematical term "limit" refers to the first of these two meanings. In other words, the mathematical concept of limit is a formalization of the intuitive concept of limit as something that one approaches or is headed toward.
This interpretation is sometimes termed the "two finger test" where one finger is used to follow the graph for slightly less than and the other finger is used to follow the graph for slightly greater than .
The concept of limit involves two key ideas, both of which help explain why the definition is structured the way it is:
0:00:15.549,0:00:19.259
Vipul: Okay, so in this talk, I'm going to
go over the basic
0:00:19.259,0:00:24.619
motivation behind the definition of limit,
and not so much the
0:00:24.619,0:00:28.099
epsilon-delta definition. That was just an intuitive idea,
and a few somewhat
0:00:28.099,0:00:29.680
non-intuitive aspects of that.
0:00:29.680,0:00:36.680
Here I have the notation: "limit as x approaches
c of f(x) is L" is
0:00:37.540,0:00:42.079
written like this. Limit ... Under the limit,
we write where the
0:00:42.079,0:00:46.180
domain point goes, so x is approaching a value,
c, and c could be an
0:00:46.180,0:00:51.059
actual number. x, however, will always be
a variable letter. This x
0:00:51.059,0:00:54.519
will not be a number. c could be a number
like zero, one, two, three,
0:00:54.519,0:00:55.329
or something.
0:00:55.329,0:01:02.050
f(x). f is the function. We are saying that
as x approaches some
0:01:02.050,0:01:06.640
number c, f(x) approaches some number L, and
thatâs what this is:
0:01:06.640,0:01:09.030
Limit as x approaches c of f(x) is L.
0:01:09.030,0:01:15.259
Now what does this mean? Roughly what it means
is that as x is coming
0:01:15.259,0:01:22.259
closer and closer to c, f(x) is sort of hanging
around L. Itâs coming
0:01:22.410,0:01:28.720
closer and closer to L. By the way, there
are two senses in which the
0:01:28.720,0:01:32.429
word limit is used in the English language:
One meaning its limit in
0:01:32.429,0:01:36.310
this approach sense, which is the mathematical
meaning of limit.
0:01:36.310,0:01:41.319
There is another sense in which the word limit
is used in the English
0:01:41.319,0:01:46.220
language, which is limit as a boundary or
a as a gap or as a bound.
0:01:46.220,0:01:53.160
We may say, there is a limit to how many apples
you can eat from the
0:01:53.160,0:01:58.640
food vault or something, and that sense of
limit is not used ... for
0:01:58.640,0:02:02.110
that sense of limit you do not use the word
"limit" in mathematics. For
0:02:02.110,0:02:05.899
that sense of limit, you use the word bound.
In mathematics, we
0:02:05.899,0:02:11.800
reserve the use of the word limit only for
this approach sense. Just
0:02:11.800,0:02:18.800
so we donât get confused in mathematics.
As I said, the idea is that
0:02:21.120,0:02:25.760
as x approaches c, f(x) approaches L, so as
x is coming closer and
0:02:25.760,0:02:29.480
closer to c, the distance between x and c
is becoming smaller and
0:02:29.480,0:02:32.740
smaller, the distance between f(x) and L is
also roughly becoming
0:02:32.740,0:02:37.980
smaller and smaller. This doesnât quite
work unless your function is
0:02:37.980,0:02:41.250
increasing or decreasing near c, so you could
have various
0:02:41.250,0:02:46.750
complications with oscillatory functions,
so the point is this notion
0:02:46.750,0:02:52.170
doesnât really ⦠it's not very clear what
we mean here without further
0:02:52.170,0:02:55.470
elaboration and without a clear definition.
0:02:55.470,0:03:02.470
I'm going to sort of move up toward the definition,
and before we go
0:03:02.970,0:03:09.180
there, I want to say, that there is a graphical
concept of limit,
0:03:09.180,0:03:13.430
which you may have seen in school. (well,
if youâve seen limits in
0:03:13.430,0:03:17.110
school, which hopefully you have. This video
is sort of more of a
0:03:17.110,0:03:21.500
review type than learning it for the first
time). Let's try to
0:03:21.500,0:03:24.630
understand this from that point of view.
0:03:24.630,0:03:31.630
Let's say, you have a function whose graph
looks something like this.
0:03:35.990,0:03:42.990
This is x of c, so this is the value x of
c, and this is a graph of
0:03:44.069,0:03:48.310
the function, these curves are the graph of
the function, so where x
0:03:48.310,0:03:53.900
is less than c, the graph is along this curve.
For x greater than c,
0:03:53.900,0:03:58.120
the graph is this curve. So x less than c,
the graph is this curve; x
0:03:58.120,0:04:01.740
greater than c, the graph is this curve. At
x equal to c, the value
0:04:01.740,0:04:06.330
is that filled dot.
0:04:06.330,0:04:13.330
You can see from here that as x is approaching
c from the left, so if
0:04:13.880,0:04:17.819
you take values of x, which are slightly less
than c, the function
0:04:17.819,0:04:23.259
values ⦠so the function, the graph of it,
the function values are
0:04:23.259,0:04:27.449
their prospective Y coordinates, so this is
x, this is Y, this is the
0:04:27.449,0:04:34.449
graph. Y is f(x). When x is to the initial
left of c, the value, Y
0:04:35.749,0:04:42.749
value, the Y approach f(x) value is ⦠are
these values, so this or
0:04:44.610,0:04:51.610
this. As x approaches c from the left, the
Y values are approaching
0:04:53.699,0:04:57.240
the Y coordinate of this open circle.
0:04:57.240,0:05:04.240
In a sense, if you just were looking at the
limit from the left for x
0:05:05.680,0:05:10.830
approaching c from the left, then the limit
would be the Y coordinate
0:05:10.830,0:05:16.279
of this open circle. You can also see an x
approaches c from the
0:05:16.279,0:05:22.749
right, so approaches from here ⦠the Y coordinate
is approaching the Y
0:05:22.749,0:05:29.749
coordinate of this thing, this open circle
on top. There are actually
0:05:31.009,0:05:38.009
two concepts here, the left-hand limit
is this value. We will call
this L1. The right-hand limit is this value,
0:05:45.599,0:05:49.349
L2, so the left-hand
limit, which is the notation as limit as x
0:05:49.349,0:05:56.349
approaches c from the left
of f(x) is L1, the right-hand limit from the
0:05:58.089,0:06:05.089
right, thatâs plus of f(x),
is L2, and the value f of c is some third
0:06:08.059,0:06:15.059
number. We donât know what
it is, but f of c, L1, L2, are in this case
0:06:16.770,0:06:18.360
all different.
0:06:18.360,0:06:25.360
What does this mean as far as the limit is
concerned? Well, the
0:06:25.900,0:06:28.259
concept of limit is usually a concept of two
sides of limit, which
0:06:28.259,0:06:33.419
means that in this case the limit as x approaches
c of f(x) does not
0:06:33.419,0:06:36.289
exist because you have a left-hand limit,
and you have a right-hand
0:06:36.289,0:06:39.860
limit, and they are not equal to each other.
The value, as such,
0:06:39.860,0:06:43.279
doesnât matter, so whether the value exists,
what it is, does not
0:06:43.279,0:06:46.379
affect this concept of limit, but the real
problem here is that the
0:06:46.379,0:06:48.490
left-hand limit and right-hand limit are not
equal. The left-hand
0:06:48.490,0:06:55.490
limit is here; the right-hand limit is up
here.
0:06:59.050,0:07:03.499
This graphical interpretation, you see the
graphical interpretation is
0:07:03.499,0:07:07.749
sort of that. For the left-hand limit, you
basically sort of follow
0:07:07.749,0:07:11.499
the graph on the immediate left and see where
it's headed to and you
0:07:11.499,0:07:15.789
get the Y coordinate of that. For the right-hand
limit, you follow
0:07:15.789,0:07:21.129
the graph on the right and see where they're
headed to, and add the Y
0:07:21.129,0:07:22.240
coordinate of that.
0:07:22.240,0:07:29.240
Let me make an example, where the limit does
exist. Let's say you
0:07:42.899,0:07:48.449
have a picture, something like this. In this
case, the left-hand limit
0:07:48.449,0:07:52.610
and right-hand limit are the same thing, so
this number, but the
0:07:52.610,0:07:55.889
values are different. You could also have
a situation where the value
0:07:55.889,0:08:00.460
doesnât exist at all. The function isn't
defined at the point, but
0:08:00.460,0:08:03.139
the limits still exist because the left-hand
limit and right-hand
0:08:03.139,0:08:04.719
limit are the same.
0:08:04.719,0:08:09.979
Now, all these examples, they're sort of a
crude way of putting this
0:08:09.979,0:08:13.710
idea, which is called the two-finger test.
You may have heard it in
0:08:13.710,0:08:18.399
some slightly different names. The two-finger
test idea is that you
0:08:18.399,0:08:23.929
use one finger to trace the curve on the immediate
left and see where
0:08:23.929,0:08:28.259
thatâs headed to, and use another finger
to trace the curve on the
0:08:28.259,0:08:33.640
immediate right and see where thatâs headed
to, and if your two
0:08:33.640,0:08:38.270
fingers can meet each other, then the place
where they meet, the Y
0:08:38.270,0:08:41.870
coordinate of that, is the limit. If, however,
they do not come to
0:08:41.870,0:08:46.940
meet each other, which happens in this case,
one of them is here, one
0:08:46.940,0:08:51.120
is here, and then the limit doesnât exist
because the left-hand limit
0:08:51.120,0:08:53.509
and right-hand limit are not equal.
0:08:53.509,0:08:59.819
This, hopefully, you have seen in great detail
where youâve done
0:08:59.819,0:09:05.779
limits in detail in school. However, what
I want to say here is that
0:09:05.779,0:09:11.850
this two-finger test is not really a good
definition of limit. Whatâs
0:09:11.850,0:09:13.600
the problem? The problem is that you could
have really crazy
0:09:13.600,0:09:18.790
function, and it's really hard to move your
finger along the graph of
0:09:18.790,0:09:25.220
the function. If the function sort of jumps
around a lot, it's really
0:09:25.220,0:09:29.440
hard, and it doesnât really solve any problem.
It's not really a
0:09:29.440,0:09:35.100
mathematically pure thing. It's like trying
to answer the
0:09:35.100,0:09:39.540
mathematical question using a physical description,
which is sort of
0:09:39.540,0:09:41.579
the wrong type of answer.
0:09:41.579,0:09:45.610
While this is very good for a basic intuition
for very simple types of
0:09:45.610,0:09:50.040
functions, it's not actually the correct idea
of limit. What kind of
0:09:50.040,0:09:56.990
things could give us trouble? Why do we need
to define our
0:09:56.990,0:10:03.209
understanding of limit? The main thing is
functions which have a lot
0:10:03.209,0:10:07.980
of oscillation. Let me do an example.
0:10:07.980,0:10:14.980
I'm now going to write down a type of function
where, in fact, you
0:10:18.220,0:10:21.899
have to develop a pure cut concept of limit
to be able to answer this
0:10:21.899,0:10:28.899
question precisely. This is a graph of a function,
sine 1 over x.
0:10:28.959,0:10:32.920
Now this looks a little weird. It's not 1
over sine x; that would
0:10:32.920,0:10:39.920
just equal secant x. It's not that. It's sine
of 1 over x, and this
0:10:44.879,0:10:50.220
function itself is not defined at x equals
zero, but just the fact
0:10:50.220,0:10:52.660
that thatâs not defined, isn't good enough
for us to say the limit
0:10:52.660,0:10:55.139
doesn't [inaudible 00:10:36] we actually have
to try to make a picture
0:10:55.139,0:10:57.660
of this and try to understand what the limit
is here.
0:10:57.660,0:11:04.660
Let's first make the picture of sine x. Sine-x
looks like that. How
0:11:12.560,0:11:19.560
will sine 1 over x look? Let's start of where
x is nearly infinity.
0:11:20.100,0:11:25.759
When x is very large positive, 1 over x is
near zero, slightly
0:11:25.759,0:11:30.660
positive, just slightly bigger than zero,
and sine 1 over x is
0:11:30.660,0:11:36.879
therefore slightly positive. It's like here.
It's going to start up
0:11:36.879,0:11:42.810
with an S [inaudible 00:11:21] at zero. Then
it's going to sort of go
0:11:42.810,0:11:49.420
this path, but much more slowly, each one,
then it's going to go this
0:11:49.420,0:11:56.420
path, but in reverse, so like that. Then it's
going to go this path,
0:11:57.149,0:12:00.740
but now it does all these oscillations, all
of these oscillations. It
0:12:00.740,0:12:03.569
has to go faster and faster.
0:12:03.569,0:12:10.569
For instance, this is pi, this 1 over pi,
then this is 2 pi, this
0:12:12.329,0:12:16.990
number is 1 over 2 pi, then the then next
time it reaches zero will be
0:12:16.990,0:12:21.160
1 over 3 pi, and so on. Whatâs going to
happen is that near zero it's
0:12:21.160,0:12:24.579
going to be crazily oscillating between minus
1, and 1. The frequency
0:12:24.579,0:12:29.170
of the oscillation keeps getting faster and
faster as you come closer
0:12:29.170,0:12:34.050
and closer to zero. The same type of picture
on the left side as
0:12:34.050,0:12:40.360
well; it's just that it's an odd function.
It's this kind of picture.
0:12:40.360,0:12:47.360
I'll make a bigger picture here ... I'll make
a bigger picture on another
0:12:53.649,0:13:00.649
one. all of these oscillation should be between
minus 1 and 1, and we
0:13:22.439,0:13:29.399
get faster so we get faster and faster, and
now my pen is too thick.
0:13:29.399,0:13:31.600
It's the same, even if you used your finger
instead of the pen to
0:13:31.600,0:13:38.600
place it, it would be too thick, it's called
the thick finger problem.
0:13:38.850,0:13:45.060
Iâm not being very accurate here, but just
the idea. The pen or
0:13:45.060,0:13:49.199
finger is too thick, but actually, there's
a very thin line, and it's
0:13:49.199,0:13:52.519
an infinitely thin line of the graph, which
goes like that.
0:13:52.519,0:13:59.519
Let's get back to our question: What is limit
as x approaches zero,
0:14:02.699,0:14:09.699
sine 1 over x. I want you to think about this
a bit. Think about like
0:14:13.439,0:14:18.050
the finger test. You move your finger around,
move it like this,
0:14:18.050,0:14:21.579
this, this ⦠you're sort of getting close
to here but still not quite
0:14:21.579,0:14:28.579
reaching it. It's ⦠where are you headed?
It's kind of a little
0:14:31.610,0:14:36.879
unclear. Notice, it's not that just because
we plug in zero doesnât
0:14:36.879,0:14:39.170
make sense, the limit doesn't... Thatâs
not the issue. The issue is
0:14:39.170,0:14:43.249
that after you make the graph, it's unclear
whatâs happening.
0:14:43.249,0:14:49.329
One kind of logic is that the other limit
is zero? Why? Well, it's
0:14:49.329,0:14:52.949
kind of balance around here. It's a bit above
and below, and it keeps
0:14:52.949,0:14:59.949
coming close to zero. That any number of the
form x is 1 over N pi,
0:15:00.329,0:15:07.329
sine 1 over x is zero. It keeps coming close
to zero. As x
0:15:07.990,0:15:12.459
approaches zero, this number keeps coming
close to zero.
0:15:12.459,0:15:17.449
If you think of limit as something thatâs
approaching, then as x
0:15:17.449,0:15:24.449
approaches zero, sine 1 over x is sort of
coming close to zero, is it?
0:15:31.230,0:15:36.550
It's definitely coming near zero, right? Anything
you make around
0:15:36.550,0:15:41.920
zero, any small ⦠this you make around zero,
the graph is going to
0:15:41.920,0:15:42.399
enter that.
0:15:42.399,0:15:47.269
On the other hand, it's not really staying
close to zero. It's kind of
0:15:47.269,0:15:50.300
oscillating with the minus 1 and 1. However,
smaller interval you
0:15:50.300,0:15:54.540
take around zero on the x thing, the function
is oscillating between
0:15:54.540,0:15:57.600
minus 1 and 1. It's not staying faithful to
zero.
0:15:57.600,0:16:02.249
Now you have kind of this question: What should
be the correct
0:16:02.249,0:16:09.249
definition of this limit? Should it mean that
it approaches the
0:16:10.029,0:16:15.100
point, but maybe goes in and out, close and
far? Or should it mean it
0:16:15.100,0:16:18.879
approaches and stays close to the point? That
is like a judgment you
0:16:18.879,0:16:22.629
have to make in the definition, and it so
happens that people who
0:16:22.629,0:16:28.639
tried defining this chose the latter idea;
that is, it should come
0:16:28.639,0:16:33.089
close and stay close. So thatâs actually
key idea number two we have
0:16:33.089,0:16:38.290
here the function ⦠for the function to
have a limit at the point, the
0:16:38.290,0:16:43.639
function needs to be trapped near the limit,
close to the point in the
0:16:43.639,0:16:45.079
domain.
0:16:45.079,0:16:49.459
This is, therefore, it doesnât have a limit
at zero because the
0:16:49.459,0:16:54.420
function is oscillating too widely. You cannot
trap it. You cannot
0:16:54.420,0:17:01.059
trap the function values. You cannot say thatâ¦
you cannot trap the
0:17:01.059,0:17:08.059
function value, say, in this small horizontal
strip near zero. You
0:17:08.319,0:17:11.650
cannot trap in the area, so that means the
limit cannot be zero, but
0:17:11.650,0:17:15.400
the same logic works anywhere else. The limit
cannot be half, because
0:17:15.400,0:17:20.440
you cannot trap the function in a small horizontal
strip about half
0:17:20.440,0:17:22.130
whereas x approaches zero.
0:17:22.130,0:17:26.440
We will actually talk about this example in
great detail in our future
0:17:26.440,0:17:30.330
with you after we've seen the formal definition,
but the key idea you
0:17:30.330,0:17:33.890
need to remember is that the function doesnât
just need to come close
0:17:33.890,0:17:37.340
to the point of its limit. It actually needs
to stay close. It needs
0:17:37.340,0:17:41.050
to be trapped near the point.
0:17:41.050,0:17:44.810
The other important idea regarding limits
is that the limit depends
0:17:44.810,0:17:50.370
only on the behavior very, very close to the
point. What do I mean by
0:17:50.370,0:17:56.580
very, very close? If you were working it like,
the real goal, you may
0:17:56.580,0:18:02.300
say, it's like, think of some really small
number and you say that
0:18:02.300,0:18:07.050
much distance from it. Let's say I want to
get the limit as x
0:18:07.050,0:18:14.050
approaches 2...I'll just write it here. I
want to get, let's say,
0:18:23.520,0:18:30.520
limit has x approaches 2 of some function,
we may say, well, we sort
0:18:30.550,0:18:37.550
of ⦠whatâs close enough? Is 2.1 close
enough? No, thatâs too far.
0:18:38.750,0:18:43.380
What about 2.0000001? Is that close enough?
0:18:43.380,0:18:47.420
Now, if you werenât a mathematician, you
would probably say, "Yes,
0:18:47.420,0:18:54.420
this is close enough." The difference is like
... so it's
0:18:57.040,0:19:04.040
10^{-7}. It's really only close to 2 compared
to our usual sense of
0:19:12.990,0:19:16.670
numbers, but as far as mathematics is concerned,
both of these numbers
0:19:16.670,0:19:21.110
are really far from 2. Any individual number
that is not 2 is very
0:19:21.110,0:19:22.130
far from 2.
0:19:22.130,0:19:29.130
What do I mean by that, well, think back to
one of our
0:19:29.670,0:19:36.670
pictures. Here's a picture. Supposed I take
some points. Let's say
0:19:41.970,0:19:47.640
this is 2, and suppose I take one point here,
which is really close to
0:19:47.640,0:19:50.970
2, and I just change the value of the function
at that point. I
0:19:50.970,0:19:55.200
change the value of the function at that point,
or I just change the
0:19:55.200,0:19:59.990
entire picture of the graph from that point
rightward. I just take
0:19:59.990,0:20:05.940
this picture, and I change it to, let's say
⦠so I replace this
0:20:05.940,0:20:11.410
picture by that picture, or I replace the
picture by some totally new
0:20:11.410,0:20:15.250
picture like that picture. I just change the
part of the graph to the
0:20:15.250,0:20:21.440
right of some point, like 2.00001, whatever.
Will that effect the
0:20:21.440,0:20:25.770
limit at 2? No, because the limit at 2 really
depends only on the
0:20:25.770,0:20:27.520
behavior if you're really, really close.
0:20:27.520,0:20:32.040
If you take any fixed point, which is not
2, and you change the
0:20:32.040,0:20:35.000
behavior sort of at this time that point or
farther away than that
0:20:35.000,0:20:42.000
point, then the behavior close to 2 doesnât
get affected. Thatâs the
0:20:42.820,0:20:46.660
other key idea here. Actually I did these
in [inaudible 00:20:30].
0:20:46.660,0:20:52.060
Thatâs how it is coming, actually, but I'll
just say it again.
0:20:52.060,0:20:56.570
The limit depends on the behavior arbitrarily
close to the point. It
0:20:56.570,0:21:00.210
doesnât depend on the behavior at any single
specific other point. It
0:21:00.210,0:21:06.910
just depends on the behavior as you approach
the point and any other
0:21:06.910,0:21:11.330
point is far away. It's only sort of together
that all the other
0:21:11.330,0:21:16.230
points matter, and it's only them getting
really close that
0:21:16.230,0:21:19.790
matters. The other thing is that the function
actually needs to be
0:21:19.790,0:21:26.790
tracked near the point for the limit notion
to be true. This type of
0:21:26.860,0:21:29.650
picture where it's oscillating between minus
1 and 1, however close
0:21:29.650,0:21:35.150
you get to zero, keeps oscillating, and so
you cannot trap it around
0:21:35.150,0:21:40.590
any point. You cannot trap the function value
in any small enough
0:21:40.590,0:21:47.590
strip. In that case, the limit doesnât exist.
In subsequent videos,
0:21:48.550,0:21:54.630
we'll see Epsilon definition, we'll do a bit
of formalism to that, and
0:21:54.630,0:22:00.640
then we'll come back to some of these issues
later with the formal
0:22:00.640,0:22:01.870
understanding.
if the following holds (the single sentence is broken down into multiple points to make it clearer):
0:00:15.809,0:00:20.490
Vipul: In this talk, I'm going to introduce
the definition, the formal epsilon delta definition
0:00:20.490,0:00:24.669
of a two-sided limit for a function of a one
variable, that's called f.
0:00:24.669,0:00:31.349
I'm going to assume there is a point c and c
doesn't actually have to be in the domain of f.
0:00:31.349,0:00:38.030
Thus f doesn't have to be defined at c for this notion to
make sense rather f is defined around c.
0:00:38.030,0:00:44.909
What that means is f is defined on some open
set containing c.
0:00:51.009,0:01:03.009
Let's make a picture here so you have c,
c + t, c -- t.
0:01:03.040,0:01:11.040
What this is saying is there is some t probably
small enough so that the function is defined
0:01:12.549,0:01:18.590
in here and may be it's not defined at the
point c.
0:01:18.590,0:01:31.590
This set for some t>0. The function is defined
on the immediate left of c and it is defined
0:01:31.999,0:01:34.770
on the immediate right of c.
0:01:34.770,0:01:38.890
We need that in order to make sense of what
I'm going to say.
0:01:38.890,0:01:44.590
We say that limit as x approaches c of f(x)
is L where L is some other real number or
0:01:44.590,0:01:49.679
maybe it's the same real number [as c], so we say
this limit equals L, now I'll write the definition
0:01:49.679,0:01:56.679
in multiple lines just to be clear about the
parts of the definition.
0:01:56.770,0:02:39.770
For every epsilon > 0. This is epsilon. There
exists delta > 0 such that
for all x in R satisfying...what?
0:02:41.070,0:02:45.070
Rui: Satisfying |x -- c| ...
0:02:45.659,0:02:53.659
Vipul: [|x-c|] should be not equal to zero so zero
less than, exclude the point c itself,
0:02:54.810,0:02:56.930
less than delta. What do we have?
0:02:56.930,0:02:59.459
Rui: We have y is within.
0:02:59.459,0:03:04.260
Vipul: Well y is just f(x).
0:03:04.260,0:03:10.290
Rui: f(x_0)
0:03:14.290,0:03:16.819
Vipul: Well f(x) minus the claimed limit is?
0:03:17.219,0:03:18.040
Rui: L.
0:03:18.640,0:03:22.890
Vipul: You're thinking of continuity which is a
little different but here we have this less than?
0:03:22.890,0:03:24.569
Rui: Epsilon.
0:03:24.569,0:03:37.569
Vipul: Epsilon. Let me now just re-write these
conditions in interval notation.
0:03:37.830,0:03:40.031
What is this saying x in what interval? [ANSWER!]
0:03:40.040,0:03:43.519
Rui: c +- ...
0:03:43.519,0:03:49.840
Vipul: c- delta to c + delta excluding the
point c itself, that is what 0 < [|x -- c|] is telling us.
0:03:49.840,0:03:56.530
It is telling us x is within delta distance
of c, but it is not including c.
0:03:56.530,0:04:10.530
Another way of writing this is (c -- delta,c) union (c, c + delta)
0:04:12.810,0:04:19.340
x is either on immediate delta left of c or
it's on the immediate delta right of c.
0:04:21.040,0:04:31.040
You do something similar on the f(x) side
so what interval is this saying, f(x) is in what? [ANSWER!]
0:04:31.720,0:04:35.930
Rui: L -- epsilon, L + epsilon.
0:04:35.930,0:04:42.930
Vipul: Awesome. Instead of writing the conditions
in this inequality form you could have written
0:04:43.919,0:04:47.590
them in this form, so instead of writing this
you could have written this or this, instead
0:04:47.590,0:04:49.580
of writing this you could have written this.
0:04:50.080,0:04:59.500
If this statement is true, the way you read this is you say
limit as x approaches c of f(x) equals L.
0:04:59.500,0:05:07.500
Okay. Now how do we define the limit?
0:05:11.169,0:05:18.169
It's the number L for which the above holds. This should be
in quotes.
0:05:22.009,0:05:29.009
If a number L exists for which.
0:05:34.220,0:05:41.220
Now what would you need in order to show that
this definition makes sense?
0:05:47.919,0:05:52.919
Rui: I don't think I understand your question.
0:06:03.090,0:06:09.090
Vipul: What I mean is, what I wanted to ask
was what would you need to prove in order
0:06:09.990,0:06:14.889
to say the notion of the limit makes sense? Well,
you need to show that there is uniqueness here.
0:06:14.740,0:06:19.080
It cannot happen that the limit is some number
L and the limit is another number M so you
0:06:19.080,0:06:20.539
need to show uniqueness.
0:06:20.539,0:06:27.330
You need to show that if this holds for one
number L it cannot also hold for another number.
0:06:27.330,0:06:32.050
Once you have shown that then it you could
define it like this.
0:06:32.050,0:06:38.440
Now I should say "if it exists."
0:06:38.440,0:06:42.120
What I'm saying is that there is a uniqueness
theorem which we will prove some other time.
0:06:42.120,0:06:49.120
Which says that if this is true for one number
it cannot be true for any other number so
0:06:49.440,0:06:54.740
this statement is true for at the most one
value of L and if there is such a value of
0:06:54.740,0:06:55.050
L that's called the limit.
if the following holds (the single sentence is broken down into multiple points to make it clearer):
if the following holds (the single sentence is broken down into multiple points to make it clearer):
The two-sided limit exists if and only if (both the left hand limit and right hand limit exist and they are equal to each other).
The formal definitions of limit, as well as of one-sided limit, can be reframed in terms of a game. This is a special instance of an approach that turns any statement with existential and universal quantifiers into a game.
Note that there is one trivial sense in which the above statement can be false, or rather, meaningless, namely, that is not defined on the immediate left or immediate right of . In that case, the limit statement above is false, but moreover, it is meaningless to even consider the notion of limit.
We can think of this in terms of a slight modification of the limit game, where, in our modification, there is an extra initial move by the prover to propose a value for the limit. The limit does not exist if the skeptic has a winning strategy for this modified game.
does not exist. The skeptic's winning strategy is as follows: regardless of the chosen by the prover, pick a fixed (independent of , so can be decided in advance of the game -- note that the skeptic could even pick and the strategy would still work). After the prover has chosen a value , find a value such that the function value lies outside . This is possible because the interval has width , hence cannot cover the entire interval , which has width 2. However, the range of the function on is all of .
The following definitions of neighborhood are good enough to define limits.
We can now list the nine cases of limits, combining finite and infinite possibilities:
We consider the multiple input variables as a vector input variable, as the definition is easier to frame from this perspective.
With these preliminaries out of the way, we can define the notion of limit. We say that: