Jacobian matrix
This article describes an analogue for functions of multiple variables of the following term/fact/notion for functions of one variable: derivative
Importance
The Jacobian matrix is the appropriate notion of derivative for a function that has multiple inputs (or equivalently, vector-valued inputs) and multiple outputs (or equivalently, vector-valued outputs).
Definition at a point
Direct epsilon-delta definition
Definition at a point in terms of gradient vectors as row vectors
Suppose is a vector-valued function with -dimensional inputs and -dimensional outputs. Explicitly, suppose is a function with inputs and outputs . Suppose is a point in the domain of such that is differentiable at for . Then, the Jacobian matrixof at is a matrix of numbers whose row is given by the gradient vector of at .
Definition at a point in terms of partial derivatives
Suppose is a vector-valued function with -dimensional inputs and -dimensional outputs. Explicitly, suppose is a function with inputs and outputs . Suppose is a point in the domain of such that is differentiable at for . Then, the Jacobian matrixof at is a matrix of numbers whose entry is given by:
Note that for this definition to be correct, it is still necessary that the gradient vectors exist. If the gradient vectors do not exist but the partial derivatives do, a matrix can still be constructed using this recipe but it may not satisfy the nice behavior that the Jacobian matrix does.
Definition as a function
Definition in terms of gradient vectors as row vectors
Suppose is a vector-valued function with -dimensional inputs and -dimensional outputs. Explicitly, suppose is a function with inputs and outputs . Then, the Jacobian matrixof is a matrix of functions whose row is given by the gradient vector of .
Note that the domain of this function is the set of points at which all the s individually are differentiable.
Definition at a point in terms of partial derivatives
Suppose is a vector-valued function with -dimensional inputs and -dimensional outputs. Explicitly, suppose is a function with inputs and outputs . Then, the Jacobian matrixof is a matrix of numbers whose entry is given by:
wherever all the s individually are differentiable in the sense of the gradient vectors existing. If the gradient vectors do not exist but the partial derivatives do, a matrix can still be constructed using this recipe but it may not satisfy the nice behavior that the Jacobian matrix does.