Quiz:Equivalence of integration problems: Difference between revisions
No edit summary |
|||
| Line 80: | Line 80: | ||
- <matH>1/(ab)</math> is an integer | - <matH>1/(ab)</math> is an integer | ||
- <math>a/b</math> is an integer | - <math>a/b</math> is an integer | ||
{Which of the following functions has an antiderivative that is '''not equivalent''' up to elementary functions to the antiderivative of <math>x \mapsto e^{-x^2}</math>? | |||
+ <math>x \mapsto e^{-x^4}</math> | |||
- <math>\mapsto e^{-x^{2/3}}</math> | |||
|| Equivalent via <math>x \mapsto x^2e^{-x^2}</math>. Start with <math>\int e^{-x^{2/3}}</math>. Do a <math>u</math>-substitution <math>u = x^{1/3}</math>, get <matH>\int 3u^2e^{-u^2} \, du</math>. | |||
- <math>x \mapsto e^{-x^{2/5}}</math> | |||
|| Equivalent via <math>x \mapsto x^4e^{-x^2}</math>. Start with <math>\int e^{-x^{2/5}}</math>. Do a <math>u</math>-substitution <math>u = x^{1/5}</math>, get <matH>\int 5u^4e^{-u^2} \, du</math>. | |||
- <math>x \mapsto x^2e^{-x^2}</math> | |||
|| Consider <math>\int x^2e^{-x^2} \, dx</math>. Perform integration by parts on this, taking <math>xe^{-x^2} \, dx</math> as the part to integrate. | |||
- <math>x \mapsto x^4e^{-x^2}</math> | |||
|| Equivalent via <math>\int x^2e^{-x^2} \, dx</math>. Consider <math>\int x^4 e^{-x^2} \, dx</math>. Split as <matH>x^3 (xe^{-x^2})</math> and take <math>xe^{-x^2}</math> as the part to integrate, and in one step we get to <math>\int x^2e^{-x^2}</math>. | |||
</quiz> | </quiz> | ||
Revision as of 03:49, 20 February 2012
This quiz considers questions about how one integration problem can be converted to another using integration by parts and integration by u-substitution.
General functions=
Specific functions