Positive derivative implies increasing: Difference between revisions

From Calculus
Line 3: Line 3:
===On an open interval===
===On an open interval===


Suppose <math>f</math> is a function on an open interval <math>I</math> that may be infinite in one or both directions (i..e, <math>I</math> is of the form <math>(a,b)</math>, <math>(a,\infty)</math>, <math>(-\infty,b)</math>, or <math>(-\infty,\infty)</math>). Suppose the [[derivative]] of <math>f</math> exists and is positive everywhere on <math>I</math>, i.e., <math>f'(x) > 0</math> for all <math>x \in I</math>. Then, <math>f</math> is an [[fact about::increasing function]] on <math>I</math>, i.e.:
Suppose <math>f</math> is a function on an open interval <math>I</math> that may be infinite in one or both directions (i..e, <math>I</math> is of the form <math>\! (a,b)</math>, <math>(a,\infty)</math>, <math>(-\infty,b)</math>, or <math>(-\infty,\infty)</math>). Suppose the [[derivative]] of <math>f</math> exists and is positive everywhere on <math>I</math>, i.e., <math>f'(x) > 0</math> for all <math>x \in I</math>. Then, <math>f</math> is an [[fact about::increasing function]] on <math>I</math>, i.e.:


<math>x_1, x_2 \in I, \qquad x_1 < x_2 \implies f(x_1) < f(x_2)</math>
<math>\! x_1, x_2 \in I, \qquad x_1 < x_2 \implies f(x_1) < f(x_2)</math>


==Facts used==
==Facts used==

Revision as of 20:42, 20 October 2011

Statement

On an open interval

Suppose is a function on an open interval that may be infinite in one or both directions (i..e, is of the form , , , or ). Suppose the derivative of exists and is positive everywhere on , i.e., for all . Then, is an increasing function on , i.e.:

Facts used

  1. Lagrange mean value theorem

Proof

Fill this in later