Quadratic function of multiple variables: Difference between revisions
Line 26: | Line 26: | ||
| [[local minimum value]] and points of attainment || If the matrix <math>A</math> is positive semidefinite, then <math>c - \frac{1}{4}\vec{b}^TM\vec{b}</math>, attained at <math>\frac{-1}{2}A^{-1}\vec{b}</math>, where <math>A = M^TM</math><br>Otherwise, no local minimum value | | [[local minimum value]] and points of attainment || If the matrix <math>A</math> is positive semidefinite, then <math>c - \frac{1}{4}\vec{b}^TM\vec{b}</math>, attained at <math>\frac{-1}{2}A^{-1}\vec{b}</math>, where <math>A = M^TM</math><br>Otherwise, no local minimum value | ||
|- | |- | ||
| [[local maximum value]] and points of attainment || If the matrix <math>A</math> is negative | | [[local maximum value]] and points of attainment || If the matrix <math>A</math> is negative semidefinite, then <math>c - \frac{1}{4}\vec{b}^TM\vec{b}</math>, attained at <math>\frac{-1}{2}A^{-1}\vec{b}</math>, where <math>A = -M^TM</math><br>Otherwise, no local maximum value | ||
|} | |} | ||
Revision as of 02:51, 26 May 2014
Definition
Consider variables . A quadratic function of the variables is a function of the form:
In vector form, if we denote by the column vector with coordinates , then we can write the function as:
where is a matrix with entries and is the column vector with entries .
Note that the matrix is non-unique: if then we could replace by . Therefore, we could choose to replace by the matrix and have the advantage of working with a symmetric matrix.
Key data
For the discussion here, assume that has been made a symmetric matrix.
Item | Value |
---|---|
default domain | the whole of |
range | If the matrix is not positive semidefinite or negative semidefinite, the range is all of . If the matrix is positive semidefinite, the range is where is the minimum value. If the matrix is negative semidefinite, the range is where is the maximum value. |
local minimum value and points of attainment | If the matrix is positive semidefinite, then , attained at , where Otherwise, no local minimum value |
local maximum value and points of attainment | If the matrix is negative semidefinite, then , attained at , where Otherwise, no local maximum value |
Differentiation
Partial derivatives and gradient vector
The partial derivative with respect to the variable , and therefore also the coordinate of the gradient vector, is given by:
In terms of the matrix and vector notation, the gradient vector, expressed as a column vector, is:
In the case that is a symmetric matrix, this simplifies to:
Hessian matrix
The Hessian matrix of the quadratic function is the matrix . In the case that is symmetric, this simplifies to .
Higher derivatives
All the higher derivative tensors are zero.
Cases
For the discussion of cases, assume that is a symmetric matrix. If is not symmetric, replace it by the symmetric matrix .
Positive definite case
First, we consider the case where is a symmetric positive definite matrix. In other words, we can write in the form:
where is a invertible matrix.
We can "complete the square" for this function:
In other words:
This is minimized when the expression whose norm we are measuring is zero, so that it is minimized when we have:
Simplifying, we obtain that we minimum occurs at:
Moreover, the value of the minimum is: