L1-regularized quadratic function of multiple variables: Difference between revisions

From Calculus
No edit summary
No edit summary
Line 1: Line 1:
==Definition==
==Definition==


A <math>L^1</math>-'''regularized quadratic functions''' of the variables <math>x_1,x_2,\dots,x_n</math> is a function of the form:
A <math>L^1</math>-'''regularized quadratic function''' of the variables <math>x_1,x_2,\dots,x_n</math> is a function of the form:


<math>\left(\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_ix_j\right) + \left(\sum_{i=1}^n b_ix_i\right) + \lambda \sum_{i=1}^n |x_i| + c</math>
<math>f(x_1,x_2,\dots,x_n) := \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_ix_j\right) + \left(\sum_{i=1}^n b_ix_i\right) + \lambda \sum_{i=1}^n |x_i| + c</math>


In vector form, if we denote by <math>\vec{x}</math> the column vector with coordinates <math>x_1,x_2,\dots,x_n</math>, then we can write the function as:
In vector form, if we denote by <math>\vec{x}</math> the column vector with coordinates <math>x_1,x_2,\dots,x_n</math>, then we can write the function as:
Line 10: Line 10:


where <math>A</math> is the <math>n \times n</math> matrix with entries <math>a_{ij}</math> and <math>\vec{b}</math> is the column vector with entries <math>b_i</math>.
where <math>A</math> is the <math>n \times n</math> matrix with entries <math>a_{ij}</math> and <math>\vec{b}</math> is the column vector with entries <math>b_i</math>.
==Key data==
{| class="sortable" border="1"
! Item !! Value
|-
| default [[domain]] || the whole of <math>\R^n</math>
|}
==Differentiation==
===Partial derivatives and gradient vector===
The partial derivative with respect to the variable <math>x_i</math>, and therefore also the <math>i^{th}</math> coordinate of the [[gradient vector]] (if it exists), is given as follows when <math>x_i \ne 0</math>:
<math>\frac{\partial f}{\partial x_i} = \left(\sum_{j=1}^n a_{ij}x_j\right) + b_i + \operatorname{sgn}(x_i)</math>
The partial derivative is undefined when <math>x_i = 0</math>.
The gradient vector exists if and only if ''all the coordinates are nonzero''.

Revision as of 19:09, 11 May 2014

Definition

A -regularized quadratic function of the variables is a function of the form:

In vector form, if we denote by the column vector with coordinates , then we can write the function as:

where is the matrix with entries and is the column vector with entries .

Key data

Item Value
default domain the whole of

Differentiation

Partial derivatives and gradient vector

The partial derivative with respect to the variable , and therefore also the coordinate of the gradient vector (if it exists), is given as follows when :

The partial derivative is undefined when .

The gradient vector exists if and only if all the coordinates are nonzero.