L1-regularized quadratic function of multiple variables: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Definition== | ==Definition== | ||
A <math>L^1</math>-'''regularized quadratic | A <math>L^1</math>-'''regularized quadratic function''' of the variables <math>x_1,x_2,\dots,x_n</math> is a function of the form: | ||
<math>\left(\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_ix_j\right) + \left(\sum_{i=1}^n b_ix_i\right) + \lambda \sum_{i=1}^n |x_i| + c</math> | <math>f(x_1,x_2,\dots,x_n) := \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_ix_j\right) + \left(\sum_{i=1}^n b_ix_i\right) + \lambda \sum_{i=1}^n |x_i| + c</math> | ||
In vector form, if we denote by <math>\vec{x}</math> the column vector with coordinates <math>x_1,x_2,\dots,x_n</math>, then we can write the function as: | In vector form, if we denote by <math>\vec{x}</math> the column vector with coordinates <math>x_1,x_2,\dots,x_n</math>, then we can write the function as: | ||
| Line 10: | Line 10: | ||
where <math>A</math> is the <math>n \times n</math> matrix with entries <math>a_{ij}</math> and <math>\vec{b}</math> is the column vector with entries <math>b_i</math>. | where <math>A</math> is the <math>n \times n</math> matrix with entries <math>a_{ij}</math> and <math>\vec{b}</math> is the column vector with entries <math>b_i</math>. | ||
==Key data== | |||
{| class="sortable" border="1" | |||
! Item !! Value | |||
|- | |||
| default [[domain]] || the whole of <math>\R^n</math> | |||
|} | |||
==Differentiation== | |||
===Partial derivatives and gradient vector=== | |||
The partial derivative with respect to the variable <math>x_i</math>, and therefore also the <math>i^{th}</math> coordinate of the [[gradient vector]] (if it exists), is given as follows when <math>x_i \ne 0</math>: | |||
<math>\frac{\partial f}{\partial x_i} = \left(\sum_{j=1}^n a_{ij}x_j\right) + b_i + \operatorname{sgn}(x_i)</math> | |||
The partial derivative is undefined when <math>x_i = 0</math>. | |||
The gradient vector exists if and only if ''all the coordinates are nonzero''. | |||
Revision as of 19:09, 11 May 2014
Definition
A -regularized quadratic function of the variables is a function of the form:
In vector form, if we denote by the column vector with coordinates , then we can write the function as:
where is the matrix with entries and is the column vector with entries .
Key data
| Item | Value |
|---|---|
| default domain | the whole of |
Differentiation
Partial derivatives and gradient vector
The partial derivative with respect to the variable , and therefore also the coordinate of the gradient vector (if it exists), is given as follows when :
The partial derivative is undefined when .
The gradient vector exists if and only if all the coordinates are nonzero.