Finite difference: Difference between revisions
(Created page with "==Definition== Given a function <math>f</math>, a '''finite difference''' for <math>f</math> with parameters real numbers <math>a</math> and <math>b</math> is the function:...") |
No edit summary |
||
| Line 14: | Line 14: | ||
| forward difference || <math>f(x + h) - f(x)</math> || 0 || <math>h</math> || right-hand derivative <math>f'_+(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | | forward difference || <math>f(x + h) - f(x)</math> || 0 || <math>h</math> || right-hand derivative <math>f'_+(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | ||
|- | |- | ||
| backward difference || <math>f(x) - f(x - h)</math> || -h</math> || 0 || left-hand derivative <math>f'_-(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | | backward difference || <math>f(x) - f(x - h)</math> || <math>-h</math> || 0 || left-hand derivative <math>f'_-(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | ||
|- | |- | ||
| central difference || <math>f(x + h) - f(x - h)</math> || <math>-h</math> || <math>h</math> || If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | | central difference || <math>f(x + \frac{h}{2}) - f(x - \frac{h}{2})</math> || <math>-h</math> || <math>h</math> || If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | ||
|} | |} | ||
==See also== | ==See also== | ||
* [[Higher-order finite difference]] | * [[Higher-order finite difference]] | ||
Revision as of 05:23, 9 May 2014
Definition
Given a function , a finite difference for with parameters real numbers and is the function:
The quotient of this by the value is a difference quotient expression.
There are three main types of finite differences parametrized by a positive real number
| Name | Expression | Value of | Value of | Limit as |
|---|---|---|---|---|
| forward difference | 0 | right-hand derivative . If is differentiable at , then this equals . | ||
| backward difference | 0 | left-hand derivative . If is differentiable at , then this equals . | ||
| central difference | If is differentiable at , then this equals . |