Sinusoidal function: Difference between revisions

From Calculus
(Created page with "==Definition== ===As a linear transform of the sine function=== The term '''sinusoidal function''' refers to a function of the form <math>f \circ \sin \circ g</math> where <mat...")
 
No edit summary
 
Line 33: Line 33:
* <math>\alpha = A \cos \varphi</math>.
* <math>\alpha = A \cos \varphi</math>.
* <math>\beta = A \sin \varphi</math>.
* <math>\beta = A \sin \varphi</math>.
==Examples==
{| class="sortable" border="1"
! Function !! How it's a sinusoidal function in the linear transform sense !! How it's a sinusoidal function in the linear combination sense
|-
| [[sine function]] || <math>0 + 1\sin(1x + 0)</math>:<br><math>\mu = 0, A = 1, m = 1, \varphi = 0</math> || <math>0 + 1\sin(1x) + 0\cos(1x)</math><br><math>\mu = 0, m = 1, \alpha = 1, \beta = 0</math>
|-
| [[cosine function]] || <math>0 + 1\sin(1x + \pi/2)</math><br><math>\mu = 0, A = 1, m = 1, \varphi = \pi/2</math> || <math>0 + 0\sin(1x) + 1\cos(1x)</math><br><math>\mu = 0, m = 1, \alpha = 0, \beta = 1</math>.
|-
| [[sine-squared function]] <math>\sin^2</math> || <math>1/2 + (1/2)\sin(2x - \pi/2)</math><br><math>\mu = 1/2, A = 1/2, m = 2, \varphi = -\pi/2</math> || <math>(1/2) + 0\sin(2x) + (-1/2)\cos(2x)</math><br><math>\mu = 1/2, m = 2, \alpha = 0, \beta = -1/2</math>
|-
| [[cosine-squared function]] <math>\cos^2</math> || <math>1/2 + (1/2)\sin(2x + \pi/2)</math><br><math>\mu = 1/2, A = 1/2, m = 2, \varphi = \pi/2</math> || <math>(1/2) + 0\sin(2x) + (1/2)\cos(2x)</math><br><math>\mu = 1/2, m = 2, \alpha = 0, \beta = 1/2</math>
|}

Latest revision as of 13:29, 5 September 2011

Definition

As a linear transform of the sine function

The term sinusoidal function refers to a function of the form where and are linear functions and is the sine function. Specifically, it is a function of the form:

Here:

  • is the mean value about which the function is oscillating, i.e., the graph of a function looks like a scaled sine function about the horizontal line .
  • is the amplitude of oscillations, i.e., the function oscillates between a minimum value of and a maximum value of .
  • is the angular frequency parameter and controls the period of oscillations, which is given by .
  • is a phase parameter that roughly describes the head start of the function relative to a function that starts at its mean value at .

As a linear combination of sine and cosine functions

The term sinusoidal function can be used for a function of the form:

Conversion between the two versions

Here's how we convert the linear combination version to the linear transform version:

  • remain the same.
  • Set .
  • Set as an angle so that and . is uniquely determined up to additive multiples of .

Here's how we convert the linear transform version to the linear combination version:

  • remain the same.
  • .
  • .

Examples

Function How it's a sinusoidal function in the linear transform sense How it's a sinusoidal function in the linear combination sense
sine function :

cosine function

.
sine-squared function

cosine-squared function