Sinusoidal function: Difference between revisions
(Created page with "==Definition== ===As a linear transform of the sine function=== The term '''sinusoidal function''' refers to a function of the form <math>f \circ \sin \circ g</math> where <mat...") |
No edit summary |
||
| Line 33: | Line 33: | ||
* <math>\alpha = A \cos \varphi</math>. | * <math>\alpha = A \cos \varphi</math>. | ||
* <math>\beta = A \sin \varphi</math>. | * <math>\beta = A \sin \varphi</math>. | ||
==Examples== | |||
{| class="sortable" border="1" | |||
! Function !! How it's a sinusoidal function in the linear transform sense !! How it's a sinusoidal function in the linear combination sense | |||
|- | |||
| [[sine function]] || <math>0 + 1\sin(1x + 0)</math>:<br><math>\mu = 0, A = 1, m = 1, \varphi = 0</math> || <math>0 + 1\sin(1x) + 0\cos(1x)</math><br><math>\mu = 0, m = 1, \alpha = 1, \beta = 0</math> | |||
|- | |||
| [[cosine function]] || <math>0 + 1\sin(1x + \pi/2)</math><br><math>\mu = 0, A = 1, m = 1, \varphi = \pi/2</math> || <math>0 + 0\sin(1x) + 1\cos(1x)</math><br><math>\mu = 0, m = 1, \alpha = 0, \beta = 1</math>. | |||
|- | |||
| [[sine-squared function]] <math>\sin^2</math> || <math>1/2 + (1/2)\sin(2x - \pi/2)</math><br><math>\mu = 1/2, A = 1/2, m = 2, \varphi = -\pi/2</math> || <math>(1/2) + 0\sin(2x) + (-1/2)\cos(2x)</math><br><math>\mu = 1/2, m = 2, \alpha = 0, \beta = -1/2</math> | |||
|- | |||
| [[cosine-squared function]] <math>\cos^2</math> || <math>1/2 + (1/2)\sin(2x + \pi/2)</math><br><math>\mu = 1/2, A = 1/2, m = 2, \varphi = \pi/2</math> || <math>(1/2) + 0\sin(2x) + (1/2)\cos(2x)</math><br><math>\mu = 1/2, m = 2, \alpha = 0, \beta = 1/2</math> | |||
|} | |||
Latest revision as of 13:29, 5 September 2011
Definition
As a linear transform of the sine function
The term sinusoidal function refers to a function of the form where and are linear functions and is the sine function. Specifically, it is a function of the form:
Here:
- is the mean value about which the function is oscillating, i.e., the graph of a function looks like a scaled sine function about the horizontal line .
- is the amplitude of oscillations, i.e., the function oscillates between a minimum value of and a maximum value of .
- is the angular frequency parameter and controls the period of oscillations, which is given by .
- is a phase parameter that roughly describes the head start of the function relative to a function that starts at its mean value at .
As a linear combination of sine and cosine functions
The term sinusoidal function can be used for a function of the form:
Conversion between the two versions
Here's how we convert the linear combination version to the linear transform version:
- remain the same.
- Set .
- Set as an angle so that and . is uniquely determined up to additive multiples of .
Here's how we convert the linear transform version to the linear combination version:
- remain the same.
- .
- .
Examples
| Function | How it's a sinusoidal function in the linear transform sense | How it's a sinusoidal function in the linear combination sense |
|---|---|---|
| sine function | : |
|
| cosine function | . | |
| sine-squared function | ||
| cosine-squared function |