Video:Limit: Difference between revisions

From Calculus
Line 4,023: Line 4,023:


<center>{{#widget:YouTube|id=bE_aKfmUHN8}}</center>
<center>{{#widget:YouTube|id=bE_aKfmUHN8}}</center>
Full timed transcript: <toggledisplay>
0:00:15.570,0:00:19.570
Vipul: Ok, so in this talk I'm going to
do the conceptual definition
0:00:19.570,0:00:26.320
of limit, which is important for a number
of reasons. The main reason
0:00:26.320,0:00:31.349
is it allows you to construct definitions
of limit, not just for this
0:00:31.349,0:00:34.430
one variable, function of one variable, two
sided limit which you have
0:00:34.430,0:00:38.930
hopefully seen before you saw this video.
Also for a number of other
0:00:38.930,0:00:43.210
limit cases which will include limits to infinity,
functions of two
0:00:43.210,0:00:47.789
variables, etc. So this is a general blueprint
for thinking about
0:00:47.789,0:00:54.789
limits. So let me put this definition here
in front for this. As I am
0:00:54.890,0:00:59.289
going, I will write things in more general.
So the starting thing is...
0:00:59.289,0:01:03.899
first of all f should be defined around the
point c, need not be
0:01:03.899,0:01:08.810
defined at c, but should be defined everywhere
around c. I won't write
0:01:08.810,0:01:11.750
that down, I don't want to complicate things
too much. So we start
0:01:11.750,0:01:18.750
with saying for every epsilon greater than
zero. Why are we picking
0:01:19.920,0:01:21.689
this epsilon greater than zero?
0:01:21.689,0:01:22.790
Rui: Why?
0:01:22.790,0:01:26.070
Vipul: What is the goal of this epsilon? Where
will it finally appear?
0:01:26.070,0:01:28.520
It will finally appear here. Is this captured?
0:01:28.520,0:01:29.520
Rui: Yes.
0:01:29.520,0:01:32.920
Vipul: Which means what we actually are picking
when we...if you've
0:01:32.920,0:01:37.720
seen the limit as a game video or you know
how to make a limit as a
0:01:37.720,0:01:41.700
game. This first thing has been chosen by
the skeptic, right, and the
0:01:41.700,0:01:45.840
skeptic is trying to challenge the prover
into trapping f(x) within L - epsilon to
0:01:45.840,0:01:50.210
L + epsilon. Even if you haven't
seen that [the game], the main focus of
0:01:50.210,0:01:55.570
picking epsilon is to pick this interval surrounding
L. So instead of
0:01:55.570,0:02:02.570
saying, for every epsilon greater than zero,
let's say for every
0:02:04.259,0:02:11.259
choice of neighborhood of L. So what I mean
by that, I have not
0:02:19.650,0:02:23.760
clearly defined it so this is a definition
which is not really a
0:02:23.760,0:02:28.139
definition, sort of the blueprint for definitions.
It is what you fill
0:02:28.139,0:02:31.570
in the details [of] and get a correct definition.
So by neighborhood,
0:02:31.570,0:02:36.180
I mean, in this case, I would mean something
like (L - epsilon, L +
0:02:36.180,0:02:43.180
epsilon). It is an open interval surrounding
L. Ok, this one. The
0:02:44.590,0:02:47.160
conceptual definition starts for every choice
of neighborhood of
0:02:47.160,0:02:54.160
L. The domain neighborhood, I haven't really
defined, but that is the
0:02:58.359,0:03:05.359
point, it is the general conceptual definition.
There exists...what
0:03:09.810,0:03:11.530
should come next? [ANSWER!]
0:03:11.530,0:03:16.530
Rui: A delta?
Vipul: That is what the concrete definition
0:03:16.530,0:03:18.530
says, but what would the
conceptual thing say?
0:03:18.530,0:03:21.680
Rui: A neighborhood.
Vipul: Of what? [ANSWER!]
0:03:21.680,0:03:28.680
Rui: Of c.
Vipul: Of c, of the domain. The goal of picking
0:03:34.639,0:03:37.970
delta is to find a
neighborhood of c. Points to the immediate
0:03:37.970,0:03:44.919
left and immediate
right of c. There exists a choice of neighborhood
0:03:44.919,0:03:51.919
of c such that, by
the way I sometimes abbreviate, such that,
0:03:59.850,0:04:06.109
as s.t., okay, don't get
confused by that. Okay, what next? Let's
0:04:06.109,0:04:12.309
bring out the thing. The next
thing is for all x with |x - c| less than
0:04:12.309,0:04:19.309
... all x in the neighborhood
except the point c itself. So what should
0:04:20.040,0:04:27.040
come here? For all x in the
neighborhood of c, I put x not equal to c.
0:04:36.570,0:04:37.160
Is that clear?
0:04:37.160,0:04:37.520
Rui: Yes.
0:04:37.520,0:04:44.520
Vipul: x not equal to c in the neighborhood
chosen for c. The reason
0:04:49.310,0:04:53.360
we're excluding the point c that we take the
limit at the point and we
0:04:53.360,0:04:55.770
just care about stuff around, we don't care
about what is happening at
0:04:55.770,0:05:02.770
the point. For c...this chosen neighborhood...I
am writing the black
0:05:09.880,0:05:14.440
for choices that the skeptic makes and the
red for the choices the
0:05:14.440,0:05:16.490
prover makes, actually that's reverse of what
I did in the other
0:05:16.490,0:05:21.320
video, but that's ok. They can change colors.
If you have seen that
0:05:21.320,0:05:24.710
limit game thing, this color pattern just
[means] ... the black
0:05:24.710,0:05:28.400
matches with the skeptic choices and the red
matches what the prover
0:05:28.400,0:05:32.710
chooses. If you haven't seen that, it is
not an issue. Just imagine
0:05:32.710,0:05:35.820
it's a single color.
0:05:35.820,0:05:40.820
What happens next? What do we need to check
in order to say this limit
0:05:40.820,0:05:42.950
is L? So f(x) should be where?
0:05:42.950,0:05:44.980
Rui: In the neighborhood of L.
0:05:44.980,0:05:48.060
Vipul: Yeah. In the concrete definition we
said f(x) minus L is less
0:05:48.060,0:05:51.440
than epsilon. Right, but that is just stating
that f(x) is in the
0:05:51.440,0:05:58.440
chosen neighborhood. So f(x) is in the chosen
neighborhood of...Now
0:06:08.470,0:06:15.470
that we have this blueprint for the definition.
This is a blueprint
0:06:25.660,0:06:32.660
for the definition. We'll write it in blue.
What I mean is, now if I
0:06:34.930,0:06:40.700
ask you to define a limit, in a slightly different
context; you just
0:06:40.700,0:06:46.280
have to figure out in order to make this rigorous
definition. What
0:06:46.280,0:06:49.240
word do you need to understand the meaning
of? [ANSWER!]
0:06:49.240,0:06:53.780
Rui: Neighborhood.
Vipul: Neighborhood, right. That's the magic
0:06:53.780,0:06:59.810
word behind which I am
hiding the details. If you can understand
0:06:59.810,0:07:06.280
what I mean by neighborhood
then you can turn this into a concrete definition.</toggledisplay>


===Functions of one variable case===
===Functions of one variable case===

Revision as of 20:26, 22 December 2012

ORIGINAL FULL PAGE: Limit
STUDY THE TOPIC AT MULTIPLE LEVELS:
ALSO CHECK OUT: Quiz (multiple choice questions to test your understanding) |Page with videos on the topic, both embedded and linked to

Motivation and general idea

{{#widget:YouTube|id=iZ_fCNvYa9U}}

Full timed transcript: [SHOW MORE]

Definition for finite limit for function of one variable

Two-sided limit

{{#widget:YouTube|id=0vy0Fslxi-k}}

Full timed transcript: [SHOW MORE]

Left hand limit

Right hand limit

{{#widget:YouTube|id=qBjqc78KGx0}}

Full timed transcript: [SHOW MORE]

Relation between the limit notions

Definition of finite limit for function of one variable in terms of a game

Two-sided limit

{{#widget:YouTube|id=Kh253PUghFk}}

Full timed transcript: [SHOW MORE]

{{#widget:YouTube|id=N0U8Y11nlPk}}

Full timed transcript: [SHOW MORE]

Non-existence of limit

{{#widget:YouTube|id=JoVuC4pksWs}}

Full timed transcript: [SHOW MORE]

Misconceptions

{{#widget:YouTube|id=Kms_VHwgdZ8}}

Full timed transcript: [SHOW MORE]

Conceptual definition and various cases

Formulation of conceptual definition

{{#widget:YouTube|id=bE_aKfmUHN8}}

Full timed transcript: [SHOW MORE]

Functions of one variable case

This covers limits at and to infinity.

{{#widget:YouTube|id=EOQby7b-WrA}}

Real-valued functions of multiple variables case

{{#widget:YouTube|id=HZcYxcZplFA}}