Max-estimate version of Lagrange remainder formula: Difference between revisions

From Calculus
No edit summary
No edit summary
 
Line 11: Line 11:
If <math>f^{(n+1)})</math> is continuous on <math>J</math>, the <math>\sup</math> can be replaced by <math>\max</math>:
If <math>f^{(n+1)})</math> is continuous on <math>J</math>, the <math>\sup</math> can be replaced by <math>\max</math>:


<math>|R_n(f;x_0)(x)| \le \left( \sup_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - x_0|^{n+1}}{(n+1)!}</math>
<math>|R_n(f;x_0)(x)| \le \left( \max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x - x_0|^{n+1}}{(n+1)!}</math>
===About the point 0===
===About the point 0===


Line 17: Line 17:


For any <math>x</math>, let <math>J</math> is the interval between <math>x</math> and <math>0</math> (it might be the interval <math>[x,0]</math> or <math>[0,x]</math> depending on whether <math>x < 0</math> or <math>x > 0</math>). If <math>f</math> is <math>n + 1</math> times differentiable everywhere on <math>J</math>, then we have:
For any <math>x</math>, let <math>J</math> is the interval between <math>x</math> and <math>0</math> (it might be the interval <math>[x,0]</math> or <math>[0,x]</math> depending on whether <math>x < 0</math> or <math>x > 0</math>). If <math>f</math> is <math>n + 1</math> times differentiable everywhere on <math>J</math>, then we have:
<math>|R_n(f;0)(x)| \le \left( \sup_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x|^{n+1}}{(n+1)!}</math>
If <math>f^{(n+1)})</math> is continuous on <math>J</math>, the <math>\sup</math> can be replaced by <math>\max</math>:


<math>|R_n(f;0)(x)| \le \left( \max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x|^{n+1}}{(n+1)!}</math>
<math>|R_n(f;0)(x)| \le \left( \max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x|^{n+1}}{(n+1)!}</math>

Latest revision as of 20:17, 12 July 2012

Statement

About a general point

Suppose f is a function of one variable and x0 is a point in the domain such that f is (n+1) times differentiable at x0. Denote by Rn(f;x0) the function of x given by xf(x)Pn(f;x0)(x), i.e., Rn(f;x0) is the remainder when we subtract from f its nth Taylor polynomial at x0.

For any x, let J is the interval between x and x0 (it might be the interval [x,x0] or [x0,x] depending on whether x<x0 or x>x0). If f is n+1 times differentiable everywhere on J, then we have:

|Rn(f;x0)(x)|(suptJ|f(n+1)(t)|)|xx0|n+1(n+1)!

If f(n+1)) is continuous on J, the sup can be replaced by max:

|Rn(f;x0)(x)|(maxtJ|f(n+1)(t)|)|xx0|n+1(n+1)!

About the point 0

Suppose f is a function of one variable such that f is (n+1) times differentiable at 0. Denote by Rn(f;0) the function of x given by xf(x)Pn(f;0)(x), i.e., Rn(f;0) is the remainder when we subtract from f its nth Taylor polynomial at 0.

For any x, let J is the interval between x and 0 (it might be the interval [x,0] or [0,x] depending on whether x<0 or x>0). If f is n+1 times differentiable everywhere on J, then we have:

|Rn(f;0)(x)|(suptJ|f(n+1)(t)|)|x|n+1(n+1)!

If f(n+1)) is continuous on J, the sup can be replaced by max:

|Rn(f;0)(x)|(maxtJ|f(n+1)(t)|)|x|n+1(n+1)!