Partial derivative: Difference between revisions

From Calculus
Line 27: Line 27:
Suppose <math>i</math> is a natural number in the set <math>\{ 1,2,3,\dots,n \}</math>.
Suppose <math>i</math> is a natural number in the set <math>\{ 1,2,3,\dots,n \}</math>.


The '''partial derivative''' ''at'' this point <math>(a_1,a_2,\dots,a_n)</math> with respect to the variable <math>x_i</math> is defined as a [[derivative]] as given below.
{| class="sortable" border="1"
 
! Item !! Value for partial derivative with respect to <math>x_i</math>
This partial derivative is also denoted as <math>f_{x_i}(a_1,a_2,\dots,a_n)</matH> or <math>f_i(a_1,a_2,\dots,a_n)</math>.
|-
 
| Notation || <math>\frac{\partial}{\partial x_i}f(x_1,x_2,\dots,x_n)|_{(x_1,x_2,\dots,x_n) = (a_1,a_2,\dots,a_n)}</math><br>Also denoted <math>f_{x_i}(a_1,a_2,\dots,a_n)</math>
'''As a derivative''':
|-
 
| Definition as [[derivative]] || <math>\frac{d}{dx_i}f(a_1,a_2,\dots,a_{i-1},x_i,a_{i+1}, \dots,a_n)|_{x_i = a_i}</math>. In other words, it is the derivative (evaluated at <math>a_i</math>) of the function <math>x \mapsto f(x_1,x_2,\dots,x_{i-1},a_i,x_{i+1},\dots,x_n)</math> with respect to <math>x_i</math>, evaluated at the point <math>x_i = a_i</math>.
<math>\frac{\partial}{\partial x_i}f(x_1,x_2,\dots,x_n)|_{(x_1,x_2,\dots,x_n) = (a_1,a_2,\dots,a_n)} = \frac{d}{dx_i}f(a_1,a_2,\dots,a_{i-1},x_i,a_{i+1}, \dots,a_n)|_{x_i = a_i}</math>
|-
 
| Definition as a [[limit]] (using derivative as limit of difference quotient) || <math>\lim_{x_i \to a_i} \frac{f(a_1,a_2,\dots,a_{i-1},x_i,a_{i+1},\dots,a_n) - f(a_1,a_2,\dots,a_n)}{x_i - a_i}</math>
In other words, it is the derivative (evaluated at <math>a_i</math>) of the function <math>x \mapsto f(x_1,x_2,\dots,x_{i-1},a_i,x_{i+1},\dots,x_n)</math> with respect to <math>x_i</math>, evaluated at the point <math>x_i = a_i</math>.
|}
 
'''As a limit''': The partial derivative can be defined explicitly as a limit:

Revision as of 00:46, 2 April 2012

Definition at a point

Generic definition

Suppose is a function of more than one variable, where is one of the input variables to . Fix a choice and fix the values of all the other variables. The partial derivative of with respect to , denoted , or , is defined as the derivative at of the function that sends to at for the same fixed choice of the other input variables.

For a function of two variables

Suppose is a real-valued function of two variables , i.e., the domain of is a subset of . Suppose is a point in the domain of . We define the partial derivatives at as follows:

Item For partial derivative with respect to For partial derivative with respect to
Notation
Also denoted or

Also denoted or
Definition as derivative . In other words, it is the derivative (at ) of the function . In other words, it is the derivative (at ) of the function .
Definition as limit (using derivative as limit of difference quotient)

Definition as directional derivative Directional derivative at with respect to a unit vector in the positive -direction. Directional derivative at with respect to a unit vector in the positive -direction.

For a function of multiple variables

The notation here gets a little messy, so read it carefully. We consider a function of variables, which we generically denote respectively. Consider a point in the domain of the function. In other words, this is a point where .

Suppose is a natural number in the set .

Item Value for partial derivative with respect to
Notation
Also denoted
Definition as derivative . In other words, it is the derivative (evaluated at ) of the function with respect to , evaluated at the point .
Definition as a limit (using derivative as limit of difference quotient)