Finite difference: Difference between revisions
No edit summary |
|||
| (One intermediate revision by the same user not shown) | |||
| Line 8: | Line 8: | ||
There are three main types of finite differences parametrized by a positive real number <math>h</math> | There are three main types of finite differences parametrized by a positive real number <math>h</math> | ||
{| class="sortable" border="1" | |||
! Name !! Symbol !! Expression !! Value of <math>a</math> !! Value of <math>b</math> !! Limit as <math>h \to 0^+</math> of the corresponding [[difference quotient]] | |||
|- | |- | ||
| forward difference || <math>\Delta_h[f](x)</math> || <math>f(x + h) - f(x)</math> || 0 || <math>h</math> || right-hand derivative <math>f'_+(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | | forward difference || <math>\Delta_h[f](x)</math> || <math>f(x + h) - f(x)</math> || 0 || <math>h</math> || right-hand derivative <math>f'_+(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | ||
| Line 18: | Line 18: | ||
| central difference || <math>\delta_h[f](x)</math> || <math>f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)</math> || <math>\frac{-h}{2}</math> || <math>\frac{h}{2}</math> || If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | | central difference || <math>\delta_h[f](x)</math> || <math>f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)</math> || <math>\frac{-h}{2}</math> || <math>\frac{h}{2}</math> || If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>. | ||
|} | |} | ||
==See also== | ==See also== | ||
* [[Higher-order finite difference]] | * [[Higher-order finite difference]] | ||
Latest revision as of 05:45, 9 May 2014
Definition
Given a function , a finite difference for with parameters real numbers and is the function:
The quotient of this by the value is a difference quotient expression.
There are three main types of finite differences parametrized by a positive real number
| Name | Symbol | Expression | Value of | Value of | Limit as of the corresponding difference quotient |
|---|---|---|---|---|---|
| forward difference | 0 | right-hand derivative . If is differentiable at , then this equals . | |||
| backward difference | 0 | left-hand derivative . If is differentiable at , then this equals . | |||
| central difference | If is differentiable at , then this equals . |