Finite difference: Difference between revisions

From Calculus
No edit summary
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:


There are three main types of finite differences parametrized by a positive real number <math>h</math>
There are three main types of finite differences parametrized by a positive real number <math>h</math>
{| class="sortable" border="1"
! Name !! Symbol !! Expression !! Value of <math>a</math> !! Value of <math>b</math> !! Limit as <math>h \to 0^+</math> of the corresponding [[difference quotient]]


{| class="sortable" border="1"
! Name !! Symbol !! Expression !! Value of <math>a</math> !! Value of <math>b</math> !! Limit as <math>h \to 0^+</math>
|-
|-
| forward difference || <math>\Delta_h[f](x)</math> || <math>f(x + h) - f(x)</math> || 0 || <math>h</math> || right-hand derivative <math>f'_+(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>.
| forward difference || <math>\Delta_h[f](x)</math> || <math>f(x + h) - f(x)</math> || 0 || <math>h</math> || right-hand derivative <math>f'_+(x)</math>. If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>.
Line 18: Line 18:
| central difference || <math>\delta_h[f](x)</math> || <math>f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)</math> || <math>\frac{-h}{2}</math> || <math>\frac{h}{2}</math> || If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>.
| central difference || <math>\delta_h[f](x)</math> || <math>f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)</math> || <math>\frac{-h}{2}</math> || <math>\frac{h}{2}</math> || If <math>f</math> is differentiable at <math>x</math>, then this equals <math>f'(x)</math>.
|}
|}
==See also==
==See also==


* [[Higher-order finite difference]]
* [[Higher-order finite difference]]

Latest revision as of 05:45, 9 May 2014

Definition

Given a function , a finite difference for with parameters real numbers and is the function:

The quotient of this by the value is a difference quotient expression.

There are three main types of finite differences parametrized by a positive real number

Name Symbol Expression Value of Value of Limit as of the corresponding difference quotient
forward difference 0 right-hand derivative . If is differentiable at , then this equals .
backward difference 0 left-hand derivative . If is differentiable at , then this equals .
central difference If is differentiable at , then this equals .

See also