Video:Limit: Difference between revisions

From Calculus
 
(8 intermediate revisions by the same user not shown)
Line 307: Line 307:


0:07:03.499,0:07:07.749
0:07:03.499,0:07:07.749
sort of that. For the left-hand limit, you
sort of that: For the left-hand limit, you
basically sort of follow
basically sort of follow


Line 397: Line 397:
0:08:53.509,0:08:59.819
0:08:53.509,0:08:59.819
This, hopefully, you have seen in great detail
This, hopefully, you have seen in great detail
where you've done
when you've done


0:08:59.819,0:09:05.779
0:08:59.819,0:09:05.779
Line 458: Line 458:


0:10:18.220,0:10:21.899
0:10:18.220,0:10:21.899
have to develop a pure cut concept of limit
have to develop a clear cut concept of limit
to be able to answer this
to be able to answer this


Line 664: Line 664:


0:15:47.269,0:15:50.300
0:15:47.269,0:15:50.300
oscillating with the minus 1 and 1. However,
oscillating within [-1,1]. However
smaller interval you
small an interval you


0:15:50.300,0:15:54.540
0:15:50.300,0:15:54.540
Line 3,789: Line 3,789:


0:18:59.870,0:19:04.260
0:18:59.870,0:19:04.260
the moves of the skeptic be right "for every"
the moves of the skeptic we write "for every"
"for all." Right? And
"for all." Right? And


0:19:04.260,0:19:07.390
0:19:04.260,0:19:07.390
for all the moves of the prover it's "there
for all the moves of the prover we write
exists." Why do we do
"there exists." Why do we do


0:19:07.390,0:19:11.140
0:19:07.390,0:19:11.140
Line 4,315: Line 4,315:


<center>{{#widget:YouTube|id=P9APtpIE4y8}}</center>
<center>{{#widget:YouTube|id=P9APtpIE4y8}}</center>
Full timed transcript: <toggledisplay>
0:00:15.530,0:00:22.530
Vipul: Okay. So this talk is going to be about
limit at infinity for functions on real numbers
0:00:24.300,0:00:28.980
and the concept of limits of sequences, how
these definitions are essentially almost the
0:00:28.980,0:00:34.790
same thing and how they differ.
0:00:34.790,0:00:41.790
Okay. So let's begin by reviewing the definition
of the limit as x approaches infinity of f(x).
0:00:42.360,0:00:47.390
Or rather what it means for that limit to
be a number L. Well, what it means is that
0:00:47.390,0:00:52.699
for every epsilon greater than zero, so we
first say for every neighborhood of L, small
0:00:52.699,0:00:59.429
neighborhood of L, given by radius epsilon
there exists a neighborhood of infinity which
0:00:59.429,0:01:03.010
is specified by choosing some a such that
that is
0:01:03.010,0:01:08.670
the interval (a,infinity) ...
0:01:08.670,0:01:15.220
... such that for all x in the interval from
a to infinity. That is for all x within the
0:01:15.220,0:01:20.430
chosen neighborhood of infinity, the f(x)
value is within the chosen neighborhood of
0:01:20.430,0:01:23.390
L. Okay?
0:01:23.390,0:01:28.049
If you want to think about it in terms of
the game between the prover and the skeptic,
0:01:28.049,0:01:34.560
the prover is claiming that the limit as x
approaches infinity of f(x) is L. The skeptic
0:01:34.560,0:01:38.930
begins by picking a neighborhood of L which
is parameterized by its radius epsilon. The
0:01:38.930,0:01:41.619
prover picks the
neighborhood of infinity which is parameterized
0:01:41.619,0:01:48.350
by its lower end a. Then the skeptic picks
a value x between a and infinity. Then they
0:01:48.350,0:01:51.990
check whether absolute value f(x) minus L
[symbolically: |f(x) - L|] is less than epsilon.
0:01:51.990,0:01:56.090
That is they check whether f(x) is in the
chosen neighborhood of L (the neighborhood
0:01:56.090,0:02:00.640
chosen by the skeptic). If it is,
then the prover wins. The prover has managed
0:02:00.640,0:02:05.810
to trap the function: for x large enough,
the prover has managed to trap the function
0:02:05.810,0:02:12.810
within epsilon distance of L. If not, then
the skeptic wins. The statement is true if
0:02:13.610,0:02:18.680
the prover has a winning the strategy for
the game.
0:02:18.680,0:02:21.730
Now, there is a similar definition which one
has for sequences. So, what's a sequence?
0:02:21.730,0:02:26.349
Well, it's just a function from the natural
numbers. And, here, we're talking of sequences
0:02:26.349,0:02:31.610
of real numbers. So, it's a function from
the naturals to the reals and we use the same
0:02:31.610,0:02:37.400
letter f for a good reason. Usually we write
sequences with subscripts, a_n type of thing.
0:02:37.400,0:02:42.409
But I'm using it as a function just to highlight
the similarities. So, limit as n approaches
0:02:42.409,0:02:47.519
infinity, n restricted to the natural numbers
... Usually if it's clear we're talking of
0:02:47.519,0:02:52.830
a sequence, we can remove this part [pointing
to the n in N constraint specification] just
0:02:52.830,0:02:54.980
say limit n approaches infinity f(n),
but since we want to be really clear here,
0:02:54.980,0:02:57.220
I have put this line. Okay?
0:02:57.220,0:03:02.709
So, this limit equals L means "for every epsilon
greater than 0 ..." So, it starts in the same
0:03:02.709,0:03:09.170
way. The skeptic picks a neighborhood of L.
Then the next line is a little different but
0:03:09.170,0:03:16.170
that's not really the crucial part. The skeptic
is choosing epsilon. The prover picks n_0,
0:03:18.799,0:03:22.830
a natural number. Now, here the prover is
picking a real number. Here the prover is
0:03:22.830,0:03:26.700
picking a natural number. That's not really
the big issue. You could in fact change this
0:03:26.700,0:03:33.659
line to match. You could interchange these
lines. It wouldn't affect either definition.
0:03:33.659,0:03:40.599
The next line is the really important one
which is different. In here [pointing to real-sense
0:03:40.599,0:03:47.430
limit], the condition has to be valid for
all x, for all real numbers x which are bigger
0:03:47.430,0:03:51.900
than the threshold which the prover has chosen.
Here on the other hand [pointing to the sequence
0:03:51.900,0:03:56.970
limit] the condition has to be valid for all
natural numbers which are bigger than the
0:03:56.970,0:04:00.659
threshold the prover has chosen. By the way,
some of you may have seen the definition with
0:04:00.659,0:04:07.659
an equality sign here. It doesn't make a difference
to the definition. It does affect what n_0
0:04:09.010,0:04:12.019
you can choose, it will go up or down by one,
but that's not
0:04:12.019,0:04:17.310
really a big issue. The big issue, the big
difference between these two definitions is
0:04:17.310,0:04:23.050
that in this definition you are insisting
that the condition here is valid for all real
0:04:23.050,0:04:30.050
x. So, you are insisting or rather the game
is forcing the prover to figure out how to
0:04:31.650,0:04:36.940
trap the function values for all real x. Whereas
here, the game is only requiring the prover
0:04:36.940,0:04:39.639
to trap the function values for all large
enough
0:04:39.639,0:04:42.880
natural numbers. So, here [real-sense limit]
it's all large enough real numbers. Here [sequence
0:04:42.880,0:04:49.250
limit] it's all large enough natural numbers.
Okay?
0:04:49.250,0:04:56.250
So, that's the only difference essentially.
Now, you can see from the way we have written
0:04:57.050,0:04:59.900
this that this [real-sense limit] is much
stronger. So, if you do have a function which
0:04:59.900,0:05:06.880
is defined on real so that both of these concepts
can be discussed. If it were just a sequence
0:05:06.880,0:05:10.080
and there were no function to talk about then
obviously, we can't even talk about this.
0:05:10.080,0:05:16.860
If there's a function defined on the reals
or on all large enough reals, then we can
0:05:16.860,0:05:21.470
try taking both of these. The existence of
this [pointing at the real-sense limit] and
0:05:21.470,0:05:24.580
[said "or", meant "and"] it's being equal
to L as much stronger than this [the sequence
0:05:24.580,0:05:27.250
limit] equal to L. If this is equal to L then
definitely this [the sequence limit] is equal
0:05:27.250,0:05:29.330
to L. Okay?
0:05:29.330,0:05:32.080
But maybe there are situations where this
[the sequence limit] is equal to some number
0:05:32.080,0:05:38.240
but this thing [the real-sense limit] doesn't
exist. So, I want to take one example here.
0:05:38.240,0:05:45.240
I have written down an example and we can
talk a bit about that is this. So, here is
0:05:45.509,0:05:52.509
a function. f(x) = sin(pi x). This is sin
(pi x) and the corresponding
0:05:55.630,0:06:00.530
function if you just restrict [it] to the
natural numbers is just sin (pi n). Now, what
0:06:00.530,0:06:06.759
does sin (pi n) look like for a natural number
n? In fact for any integer n? pi times
0:06:06.759,0:06:13.759
n is an integer multiple of pi. sin of integer
multiples of pi is zero. Let's make a picture
0:06:18.370,0:06:25.370
of sin ...
0:06:27.289,0:06:33.360
It's oscillating. Right? Integer multiples
of pi are precisely the ones where it's meeting
0:06:33.360,0:06:40.330
the axis. So, in fact we are concerned about
the positive one because we are talking of
0:06:40.330,0:06:45.840
the sequence (natural number [inputs]). Okay?
And so, if you are looking at this sequence,
0:06:45.840,0:06:51.090
all the terms here are zero. So, the limit
is also zero. So, this limit [the sequence
0:06:51.090,0:06:53.030
limit] is zero.
0:06:53.030,0:07:00.030
Okay. What about this limit? Well, we have
the picture again. Is it going anywhere? No.
0:07:05.349,0:07:07.650
It's oscillating between minus one and one
[symbolically: oscillating in [-1,1]]. It's
0:07:07.650,0:07:11.669
not settling down to any number. It's not...
You cannot trap it near any particular number
0:07:11.669,0:07:17.280
because it's all over the map between minus
one and one. For the same reason that sin(1/x)
0:07:17.280,0:07:22.840
doesn't approach anything as x approaches
zero, the same reason sin x or sin(pi x) doesn't
0:07:22.840,0:07:29.840
approach anything as x approaches infinity.
So, the limit for the real thing, this does
0:07:31.099,0:07:37.539
not exist. So, this gives an example where
the real thing [the real-sense limit] doesn't
0:07:37.539,0:07:44.539
exist and the sequence thing [sequence limit]
does exist and so here is the overall summary.
0:07:44.690,0:07:46.979
If the real sense limit,
that is this one [pointing to definition of
0:07:46.979,0:07:51.039
real sense limit] exists, [then] the sequence
limit also exists and they're both equal.
0:07:51.039,0:07:54.419
On the other hand, you can have a situation
with the real sense limit, the limit for the
0:07:54.419,0:08:00.819
function of reals doesn't exist but the sequence
limit still exists like this set up. Right?
0:08:00.819,0:08:05.569
Now, there is a little caveat that I want
to add. If the real sense limit doesn't exist
0:08:05.569,0:08:11.069
as a finite number but it's say plus infinity
then the sequence limit also has to be plus
0:08:11.069,0:08:16.150
infinity. If the real sense limit is minus
infinity, then the sequence limit also has
0:08:16.150,0:08:20.330
to be minus infinity. So, this type of situation,
where the real sense limit doesn't exist but
0:08:20.330,0:08:26.840
the sequence exists, well, will happen in
kind of oscillatory type of situations. Where
0:08:26.840,0:08:31.409
the real sense you have an oscillating thing
and in the sequence thing on the other hand
0:08:31.409,0:08:36.330
you somehow manage to pick a bunch of points
where that oscillation doesn't create a problem.
0:08:36.330,0:08:36.789
Okay?
0:08:36.789,0:08:43.630
Now, why is this important? Well, it's important
because in a lot of cases when you have to
0:08:43.630,0:08:50.630
calculate limits of sequences, you just calculate
them by doing, essentially, just calculating
0:08:53.230,0:09:00.230
the limits of the function defining the sequence
as a limit of a real valued function. Okay?
0:09:00.230,0:09:03.460
So, for instance if I ask you what is limit
...
0:09:03.460,0:09:10.460
Okay. I'll ask you what is limit [as] n approaches
infinity of n^2(n + 1)/(n^3 + 1) or something
0:09:15.200,0:09:22.200
like that. Right? Some rational function.
You just do this calculation as if you were
0:09:25.430,0:09:29.720
just doing a limit of a real function, function
of real numbers, right? The answer you get
0:09:29.720,0:09:33.060
will be the correct one. If it's a finite
number it will be the same finite number.
0:09:33.060,0:09:37.850
In this case it will just be one. But any
rational function, if the answer is finite,
0:09:37.850,0:09:44.070
same answer for the sequence. If it is plus
infinity, same answer for the sequence. If
0:09:44.070,0:09:46.250
it is minus infinity, same answer as for the
sequence.
0:09:46.250,0:09:53.250
However, if the answer you get for the real-sense
limit is oscillatory type of non existence,
0:09:54.660,0:09:59.410
then that's inconclusive as far as the sequence
is concerned. You actually have to think about
0:09:59.410,0:10:05.520
the sequence case and figure out for yourself
what happens to the limit. Okay? If might
0:10:05.520,0:10:07.230
in
fact be the case that the sequence limit actually
0:10:07.230,0:10:11.380
does exist even though the real sense [limit]
is oscillatory. Okay.</toggledisplay>


===Real-valued functions of multiple variables case===
===Real-valued functions of multiple variables case===


<center>{{#widget:YouTube|id=usb3jew_QVI}}</center>
<center>{{#widget:YouTube|id=usb3jew_QVI}}</center>

Latest revision as of 22:29, 29 August 2013

ORIGINAL FULL PAGE: Limit
STUDY THE TOPIC AT MULTIPLE LEVELS:
ALSO CHECK OUT: Quiz (multiple choice questions to test your understanding) |Page with videos on the topic, both embedded and linked to

The videos below are all taken from certain playlists. Instead of watching the videos on this page, you may prefer to watch the entire playlists on YouTube. Below are the playlist links:

Motivation and general idea

{{#widget:YouTube|id=iZ_fCNvYa9U}}

Full timed transcript: [SHOW MORE]

Definition for finite limit for function of one variable

Two-sided limit

{{#widget:YouTube|id=0vy0Fslxi-k}}

Full timed transcript: [SHOW MORE]

Left hand limit

Right hand limit

{{#widget:YouTube|id=qBjqc78KGx0}}

Full timed transcript: [SHOW MORE]

Relation between the limit notions

Definition of finite limit for function of one variable in terms of a game

Two-sided limit

{{#widget:YouTube|id=Kh253PUghFk}}

Full timed transcript: [SHOW MORE]

{{#widget:YouTube|id=N0U8Y11nlPk}}

Full timed transcript: [SHOW MORE]

Non-existence of limit

{{#widget:YouTube|id=JoVuC4pksWs}}

Full timed transcript: [SHOW MORE]

Misconceptions

{{#widget:YouTube|id=F0r_offAc5M}}

Full timed transcript: [SHOW MORE]

Conceptual definition and various cases

Formulation of conceptual definition

{{#widget:YouTube|id=bE_aKfmUHN8}}

Full timed transcript: [SHOW MORE]

Functions of one variable case

This covers limits at and to infinity.

{{#widget:YouTube|id=EOQby7b-WrA}}

Limit of sequence versus real-sense limit

{{#widget:YouTube|id=P9APtpIE4y8}}

Full timed transcript: [SHOW MORE]

Real-valued functions of multiple variables case

{{#widget:YouTube|id=usb3jew_QVI}}