Quiz:Limit and continuity: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
|type="()"} | |type="()"} | ||
- For every <math>\alpha > 0</math>, there exists <math>\beta > 0</math> such that if <math>0 < |x - c| < \alpha</math>, then <math>|f(x) - L| < \beta</math>. | - For every <math>\alpha > 0</math>, there exists <math>\beta > 0</math> such that if <math>0 < |x - c| < \alpha</math>, then <math>|f(x) - L| < \beta</math>. | ||
- There exists <math>\alpha > 0 | - There exists <math>\alpha > 0</math> such that for every <math>\beta > 0</math>, and <math>0 < |x - c| < \alpha</math>, we have <math>|f(x) - L| < \beta</math>. | ||
+ For every <math>\alpha > 0</math>, there exists <math>\beta > 0</math> such that if <math>0 < |x - c| < \beta</math>, then <math>|f(x) - L| < \alpha</math>. | + For every <math>\alpha > 0</math>, there exists <math>\beta > 0</math> such that if <math>0 < |x - c| < \beta</math>, then <math>|f(x) - L| < \alpha</math>. | ||
- There exists <math>\alpha > 0</math> such that for every <math>\beta > 0</math> and <math>0 < |x - c| < \beta</math>, we have <math>|f(x) - L| < \alpha</math>. | - There exists <math>\alpha > 0</math> such that for every <math>\beta > 0</math> and <math>0 < |x - c| < \beta</math>, we have <math>|f(x) - L| < \alpha</math>. |
Revision as of 22:46, 20 October 2011
Formal definition of limit and continuity