Point of local extremum: Difference between revisions

From Calculus
(Created page with "==Definition== A '''point of local extremum''' refers to a point in the interior of the domain of a function that is either a '''point of local maximum''' or a '''po...")
 
Line 24: Line 24:
| Point of strict local minimum || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c - \delta,c + \delta) \setminus \{ c \}</math> (i.e., all <math>x</math> satisfying <math>0 < |x - c| < \delta</math>).
| Point of strict local minimum || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c - \delta,c + \delta) \setminus \{ c \}</math> (i.e., all <math>x</math> satisfying <math>0 < |x - c| < \delta</math>).
|-
|-
| Point of local maximum from the left || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of local maximum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \le f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
| Point of local maximum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local maximum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \le f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
|-
|-
| Point of local maximum from the right || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of local maximum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \le f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
| Point of local maximum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local maximum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \le f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
|-
|-
| Point of local minimum from the left || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of local minimum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \ge f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
| Point of local minimum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local minimum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \ge f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
|-
|-
| Point of local minimum from the right || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of local minimum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \ge f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
| Point of local minimum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local minimum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \ge f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
|-
|-
| Point of strict local maximum from the left || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local maximum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) < f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
| Point of strict local maximum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local maximum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) < f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
|-
|-
| Point of strict local maximum from the right || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local maximum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) < f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
| Point of strict local maximum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local maximum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) < f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
|-
|-
| Point of strict local minimum from the left || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
| Point of strict local minimum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>).
|-
|-
| Point of strict local minimum from the right || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
| Point of strict local minimum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>).
|}
|}



Revision as of 18:58, 20 October 2011

Definition

A point of local extremum refers to a point in the interior of the domain of a function that is either a point of local maximum or a point of local minimum. Both these are defined below.

Point of local maximum

A point in the interior of the domain of a function is a point of local maximum if there exists a value such that for all (i.e., all satisfying ).

The value is termed a local maximum value.

Point of local minimum

A point in the interior of the domain of a function is a point of local maximum if there exists a value such that for all (i.e., all satisfying ).

The value is termed a local minimum value.

Variations

Variation name Definition
Point of strict local maximum A point in the interior of the domain of a function is a point of strict local maximum if there exists a value such that for all (i.e., all satisfying ).
Point of strict local minimum A point in the interior of the domain of a function is a point of strict local minimum if there exists a value such that for all (i.e., all satisfying ).
Point of local maximum from the left A point in the domain of a function is a point of local maximum from the left if there exists a value such that for all (i.e., all satisfying ).
Point of local maximum from the right A point in the domain of a function is a point of local maximum from the right if there exists a value such that for all (i.e., all satisfying ).
Point of local minimum from the left A point in the domain of a function is a point of local minimum from the left if there exists a value such that for all (i.e., all satisfying ).
Point of local minimum from the right A point in the domain of a function is a point of local minimum from the right if there exists a value such that for all (i.e., all satisfying ).
Point of strict local maximum from the left A point in the domain of a function is a point of strict local maximum from the left if there exists a value such that for all (i.e., all satisfying ).
Point of strict local maximum from the right A point in the domain of a function is a point of strict local maximum from the right if there exists a value such that for all (i.e., all satisfying ).
Point of strict local minimum from the left A point in the domain of a function is a point of strict local minimum from the left if there exists a value such that for all (i.e., all satisfying ).
Point of strict local minimum from the right A point in the domain of a function is a point of strict local minimum from the right if there exists a value such that for all (i.e., all satisfying ).

Facts