Point of local extremum: Difference between revisions
(Created page with "==Definition== A '''point of local extremum''' refers to a point in the interior of the domain of a function that is either a '''point of local maximum''' or a '''po...") |
|||
Line 24: | Line 24: | ||
| Point of strict local minimum || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c - \delta,c + \delta) \setminus \{ c \}</math> (i.e., all <math>x</math> satisfying <math>0 < |x - c| < \delta</math>). | | Point of strict local minimum || A point <math>\!c</math> in the [[interior]] of the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c - \delta,c + \delta) \setminus \{ c \}</math> (i.e., all <math>x</math> satisfying <math>0 < |x - c| < \delta</math>). | ||
|- | |- | ||
| Point of local maximum from the left || A point <math>\!c</math> in | | Point of local maximum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local maximum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \le f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>). | ||
|- | |- | ||
| Point of local maximum from the right || A point <math>\!c</math> in | | Point of local maximum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local maximum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \le f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>). | ||
|- | |- | ||
| Point of local minimum from the left || A point <math>\!c</math> in | | Point of local minimum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local minimum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \ge f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>). | ||
|- | |- | ||
| Point of local minimum from the right || A point <math>\!c</math> in | | Point of local minimum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of local minimum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) \ge f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>). | ||
|- | |- | ||
| Point of strict local maximum from the left || A point <math>\!c</math> in | | Point of strict local maximum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local maximum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) < f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>). | ||
|- | |- | ||
| Point of strict local maximum from the right || A point <math>\!c</math> in | | Point of strict local maximum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local maximum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) < f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>). | ||
|- | |- | ||
| Point of strict local minimum from the left || A point <math>\!c</math> in | | Point of strict local minimum from the left || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum from the left''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c - \delta,c)</math> (i.e., all <math>x</math> satisfying <math>0 < c - x < \delta</math>). | ||
|- | |- | ||
| Point of strict local minimum from the right || A point <math>\!c</math> in | | Point of strict local minimum from the right || A point <math>\!c</math> in the [[domain]] of a [[function]] <math>f</math> is a '''point of strict local minimum from the right''' if there exists a value <math>\delta > 0</math> such that <math>\! f(x) > f(c)</math> for all <math>x \in (c, c + \delta)</math> (i.e., all <math>x</math> satisfying <math>0 < x - c < \delta</math>). | ||
|} | |} | ||
Revision as of 18:58, 20 October 2011
Definition
A point of local extremum refers to a point in the interior of the domain of a function that is either a point of local maximum or a point of local minimum. Both these are defined below.
Point of local maximum
A point in the interior of the domain of a function is a point of local maximum if there exists a value such that for all (i.e., all satisfying ).
The value is termed a local maximum value.
Point of local minimum
A point in the interior of the domain of a function is a point of local maximum if there exists a value such that for all (i.e., all satisfying ).
The value is termed a local minimum value.
Variations
Variation name | Definition |
---|---|
Point of strict local maximum | A point in the interior of the domain of a function is a point of strict local maximum if there exists a value such that for all (i.e., all satisfying ). |
Point of strict local minimum | A point in the interior of the domain of a function is a point of strict local minimum if there exists a value such that for all (i.e., all satisfying ). |
Point of local maximum from the left | A point in the domain of a function is a point of local maximum from the left if there exists a value such that for all (i.e., all satisfying ). |
Point of local maximum from the right | A point in the domain of a function is a point of local maximum from the right if there exists a value such that for all (i.e., all satisfying ). |
Point of local minimum from the left | A point in the domain of a function is a point of local minimum from the left if there exists a value such that for all (i.e., all satisfying ). |
Point of local minimum from the right | A point in the domain of a function is a point of local minimum from the right if there exists a value such that for all (i.e., all satisfying ). |
Point of strict local maximum from the left | A point in the domain of a function is a point of strict local maximum from the left if there exists a value such that for all (i.e., all satisfying ). |
Point of strict local maximum from the right | A point in the domain of a function is a point of strict local maximum from the right if there exists a value such that for all (i.e., all satisfying ). |
Point of strict local minimum from the left | A point in the domain of a function is a point of strict local minimum from the left if there exists a value such that for all (i.e., all satisfying ). |
Point of strict local minimum from the right | A point in the domain of a function is a point of strict local minimum from the right if there exists a value such that for all (i.e., all satisfying ). |
Facts
- Point of local extremum implies critical point
- Critical point not implies point of local extremum
- Local maximum from the left implies left hand derivative is nonnegative if it exists
- Local maximum from the right implies right hand derivative is nonpositive if it exists
- Local minimum from the left implies left hand derivative is nonpositive if it exists
- Local minimum from the right implies right hand derivative is nonnegative if it exists