Condition number: Difference between revisions

From Calculus
(Created page with "==Definition== ===For an arbitrary function of one variable=== The condition number for a function <math>f</math> at a point <math>x_0</math> in the interior of its domain c...")
 
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Definition==
==Definition for a function of one variable==


===For an arbitrary function of one variable===
===For an arbitrary function of one variable===


The condition number for a function <math>f</math> at a point <math>x_0</math> in the interior of its domain can be defined formally as:
The condition number for a function <math>f</math> at a point <math>x_0</math> in the interior of its domain, and where <math>f</math> is a continuous function, can be defined formally as:


<math>\lim \sup_{x \to x_0} \left| \frac{\frac{f(x) - f(x_0)}{f(x_0)}}{\frac{(x - x_0}{x_0}}\right|</math>
<math>\lim \sup_{x \to x_0} \left| \frac{\frac{f(x) - f(x_0)}{f(x)}}{\frac{x - x_0}{x}} \right|</math>
 
where <math>| \cdot |</math> denotes the [[absolute value]].


===For a differentiable function of one variable===
===For a differentiable function of one variable===


Consider a function <math>f</math> of one variable. The condition number of <math>f</math> is defined as the [[absolute value]] of the [[relative logarithmic derivative]] of <math>f</math>. Explicitly, the condition number of <math>f</math> at a point <math>x_0</math> in the domain of <math>f</math> satisfying the conditions that the [[derivative]] <math>f'(x_0)</math> exists, <math>x_0 \ne 0</math>, and <math>f(x_0) \ne 0</math>, is defined as:
Consider a function <math>f</math> of one variable. The condition number of <math>f</math> is defined as the [[absolute value]] of the [[relative logarithmic derivative]] of <math>f</math>. Explicitly, the condition number of <math>f</math> at a point <math>x_0</math> in the domain of <math>f</math> satisfying the conditions that the [[derivative]] <math>f'(x_0)</math> exists, <math>x_0 \ne 0</math>, and <math>f(x_0) \ne 0</math>, simplifies to:


<math>\left|\frac{x_0 f'(x_0)}{f(x_0)}\right|</math>
<math>\left|\frac{x_0 f'(x_0)}{f(x_0)}\right|</math>
In cases where <math>f'</math> is continuous at and around <math>x_0</math>, we may be able to compute the ''limit'' of this expression to obtain that condition number in cases where <math>f(x_0) = 0</math>. Explicitly:
<math>\lim_{x \to x_0} \left|\frac{xf'(x)}{f(x)}\right|</math>
===For a function with one-sided derivatives===
For a function that is not differentiable but has one-sided derivatives <math>f'_-(x_0)</math> and <math>f'_+(x_0)</math> at a point <math>x_0</math>, the condition number can be defined as:
<math>\left|\frac{x_0 \max \{ |f'_-(x_0)|,|f'_+(x_0)| \}}{f(x_0)}\right|</math>
==Some example functions==
{| class="sortable" border="1"
! Function <math>f</math> (in terms of input variable <math>x</math>) !! [[derivative]] <math>f'</math> !! [[relative logarithmic derivative]] <math>xf'(x)/f(x)</math> !! condition number (itself a function of <math>x</math>) !! limiting value as <math>x \to \infty</math>
|-
| [[power function]] <math>x^r</math> for some real number <math>r</math> (domain conditions apply) || <math>rx^{r-1}</math> || <math>r</math> || <math>|r|</math> (note that the condition number is in this case a ''constant'' function) || <math>|r|</math>
|-
| [[exponential function]] <math>e^x</math> || <math>e^x</math> || <math>x</math> || <math>|x|</math> || <math>\infty</math>
|-
| [[logarithm function]] <math>\ln x</math> (<math>x > 0</math>) || <math>1/x</math> || <math>1/ \ln x</math> || <math>1/|\ln x|</math> || 0
|-
| [[sine function]] <math>\sin x</math> || <math>\cos x</math> || <math>\frac{x \cos x}{\sin x}</math> || <math>\frac{|x \cos x|}{|\sin x|}</math> || undefined, fluctuates wildly
|}

Latest revision as of 15:13, 1 May 2014

Definition for a function of one variable

For an arbitrary function of one variable

The condition number for a function f at a point x0 in the interior of its domain, and where f is a continuous function, can be defined formally as:

limsupxx0|f(x)f(x0)f(x)xx0x|

where || denotes the absolute value.

For a differentiable function of one variable

Consider a function f of one variable. The condition number of f is defined as the absolute value of the relative logarithmic derivative of f. Explicitly, the condition number of f at a point x0 in the domain of f satisfying the conditions that the derivative f(x0) exists, x00, and f(x0)0, simplifies to:

|x0f(x0)f(x0)|

In cases where f is continuous at and around x0, we may be able to compute the limit of this expression to obtain that condition number in cases where f(x0)=0. Explicitly:

limxx0|xf(x)f(x)|

For a function with one-sided derivatives

For a function that is not differentiable but has one-sided derivatives f'(x0) and f'+(x0) at a point x0, the condition number can be defined as:

|x0max{|f'(x0)|,|f'+(x0)|}f(x0)|

Some example functions

Function f (in terms of input variable x) derivative f relative logarithmic derivative xf(x)/f(x) condition number (itself a function of x) limiting value as x
power function xr for some real number r (domain conditions apply) rxr1 r |r| (note that the condition number is in this case a constant function) |r|
exponential function ex ex x |x|
logarithm function lnx (x>0) 1/x 1/lnx 1/|lnx| 0
sine function sinx cosx xcosxsinx |xcosx||sinx| undefined, fluctuates wildly