Partial derivative

From Calculus

Definition at a point

Generic definition

Suppose is a function of more than one variable, where is one of the input variables to . Fix a choice and fix the values of all the other variables. The partial derivative of with respect to , denoted , or , is defined as the derivative at of the function that sends to at for the same fixed choice of the other input variables.

For a function of two variables

Suppose is a real-valued function of two variables , i.e., the domain of is a subset of . We define the partial derivatives as follows:

  • Partial derivative with respect to :

In words, it is the derivative at of the function .

This partial derivative is also denoted or .

  • Partial derivative with respect to :

In words, it is the derivative at of the function .

This partial derivative is also denoted or .

For a function of multiple variables

Fill this in later